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Connections Crash Course
Nic Ford

1 Introduction
This article is the third in a series on physics for mathematicians. This series contains a later
article on gauge fields, and I plan to also produce one on general relativity, and as the plans
for those two topics came together I decided it would be helpful if I first covered an important
piece of machinery that they both have in common.

The object we will be discussing is called a “connection.” Roughly speaking, a connection is
an extra piece of structure that can be put on a fiber bundle that allows you to compare nearby
fibers with each other. This topic is a standard part ofmany differential geometry textbooks, but
I am taking a somewhat unorthodox approach, starting out from amore general perspective
than usual. I’ve done this for two reasons. First, the discussion of gauge theory needs themore
general version anyway, and it might be preferable to avoid repeating the work needed to get
there. But second, andmore importantly, the common special cases— especially the case of
connections on the tangent bundle—makemore sense when one knows what a connection is
supposed to look like in other settings.

The prerequisites for following this presentation are similar to those for the article onHamil-
tonian and Lagrangianmechanics. The target audience (if such a person exists at all) is someone
who is reasonably comfortable with the fundamental ideas of differential geometry, including
fiber bundles and vector bundles, the Lie bracket of vector fields, the definition of a Riemannian
metric, and Stokes’ Theorem, but who doesn’t know how to define curvature, and whomight
not knowwhat connections are or why anyone would care about them.

Every topological space appearing in this article is a smoothmanifold. If𝑀 is a manifold,
we’ll write𝑇𝑀 for its tangent bundle and𝑇𝑥𝑀 for the tangent space at some point 𝑥 ∈ 𝑀 . Given
a map 𝑓 : 𝑀 → 𝑁 of manifolds, we will write 𝑓∗ : 𝑇𝑥𝑀 → 𝑇𝑓 (𝑥 )𝑁 for the induced map on
tangent spaces. Similarly, we will spend a lot of time talking about fiber bundles of the form
𝜋 : 𝐸 → 𝑀 , and we will often use the notation 𝐸𝑥 to refer to the fiber 𝜋−1 ({𝑥}). Given a Lie
group𝐺 and some 𝑔 ∈ 𝐺 , we will use the common convention of writing 𝐿𝑔 : 𝐺 → 𝐺 for the
map defined by 𝐿𝑔 (ℎ) = 𝑔ℎ, and similarly for 𝑅𝑔 .

One of themost enjoyable aspects of writing this article was the chance to solidify my own
knowledge of thematerial, and I found several sources helpful, including:

• A Comprehensive Introduction to Differential Geometry by Michael Spivak, especially
Volume II.

• Gauge Fields, Knots, and Gravity by John Baez and Javier P. Muniain

• Global Calculus by S. Ramanan

• Natural Operations in Differential Geometry by Ivan Kolář, PeterW.Michor, and Jan Slovák
(available onMichor’s website)

http://nicf.net/articles/physics-for-mathematicians
http://nicf.net/articles/classical-em/
http://nicf.net/articles/classical-em/
http://nicf.net/articles/hamiltonian-mechanics
http://nicf.net/articles/hamiltonian-mechanics
https://www.mat.univie.ac.at/~michor/kmsbookh.pdf
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I’mvery grateful to YuvalWigderson,Hunter Brooks, Jake Levinson, and JeffHicks for reading
through and commenting on earlier versions of this article.

2 Dragging Things in Fiber Bundles
Consider a fiber bundle 𝐸 over a manifold𝑀 , and write 𝜋 : 𝐸 → 𝑀 for the projection. The
usual intuition is that a point 𝑒 ∈ 𝐸 is meant to represent a choice of some extra piece of data
we are attaching to the point 𝜋 (𝑒 ) ∈ 𝑀 . For example, if 𝐸 is the tangent bundle of𝑀 , then 𝑒
represents the point 𝜋 (𝑒 ) together with a choice of tangent vector at that point.

Throughout this article we will be concernedwith one particular thing onemight want to do
with such a piece of data. Suppose we have a path𝛾 : [0, 1] → 𝑀 starting at 𝜋 (𝑒 ). How can we
“drag” the extra piece of data we’ve chosen (the tangent vector, say) along𝛾 from𝛾 (0) = 𝜋 (𝑒 ) to
𝛾 (1)? This procedure (once we have been told how to do it) is called “parallel transport.”

There are many settings in which a notion of parallel transport arises naturally, and we are
about to consider a couple examples. But the structure of the fiber bundle alone is not enough
to give us a rule for parallel transport —while each fiber can be identified with some standard
fiber 𝐹 , in general there is no canonical way to do this, and therefore no way to declare that,
say, a tangent vector at one point is “the same tangent vector” as one at another point. We
will therefore need to add an extra piece of structure to the fiber bundle in order to know how
parallel transport is supposed to work. This extra piece of structure is called a “connection,” and
it’s what this article is all about.

2.1 Motivating Examples
In an attempt tomake the definition of connection we land on seem as intuitive as possible, we
will build it up in steps by considering two examples in which parallel transport arises naturally.

Example 1. Imagine a spherical marble rolling around on a planar table. We will assume
there is enough friction that themarble never “spins or slips,” so that when we push it in some
direction it rolls about the perpendicular axis:

Our goal is to find a way to describe, for any path𝛾 in the plane, how themarble rotates as
we roll it along𝛾 .

We can specify the configuration of themarble at anymoment in time with two pieces of
information: the point of the plane that themarble touches, and how themarble is oriented
above that point. By embedding the whole picture inR3, so that the plane is the 𝑥-𝑦 plane and
themarble sits directly on top of it, the configuration of themarble can be given by an element
of 𝑆𝑂 (3), and so the whole configuration space can be identified with the trivial fiber bundle
R2 × 𝑆𝑂 (3) overR2. We’ll write 𝜋 : R2 × 𝑆𝑂 (3) → R2 for the projectionmap.
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We can then phrase the “how to roll” problem in terms of this fiber bundle: given a point
𝑒 ∈ R2 × 𝑆𝑂 (3) and a path 𝛾 : [0, 1] → R2 starting at 𝜋 (𝑒 ), how should we lift 𝛾 to a path
𝛾 : [0, 1] → R2 × 𝑆𝑂 (3) so that𝛾 (0) = 𝑒 , 𝜋 (𝛾 (𝑡 )) = 𝛾 (𝑡 ) for all 𝑡 , and the lifted tangent vector
indicates which direction the marble rolls? Once we have a rule for producing𝛾 from𝛾 , the
𝑆𝑂 (3) part of𝛾 (𝑡 ) will tell us how the sphere is rotated after it has been rolled along the path up
to𝛾 (𝑡 ).

Example 2. Consider a manifold𝑀 embedded in some R𝑛 , and take a point 𝑥 ∈ 𝑀 and
a tangent vector 𝑣 ∈ 𝑇𝑥𝑀 . For any path 𝛾 : [0, 1] → 𝑀 starting at 𝑥 , we would like a way to
produce a tangent vector at each𝛾 (𝑡 ) which is, in some suitable sense, the result of dragging 𝑣
along the path up to that point. In other words, writing 𝜋 : 𝑇𝑀 → 𝑀 for the projection, we are
looking for a way to lift𝛾 to a path𝛾 : [0, 1] → 𝑇𝑀 with𝛾 (0) = 𝑣 and 𝜋 (𝛾 (𝑡 )) = 𝛾 (𝑡 ) for all 𝑡 .

There is of course no canonical way to choose 𝛾 given just the manifold𝑀 , but the em-
bedding of𝑀 intoR𝑛 produces a natural choice. The embedding also lets us embed tangent
vectors to𝑀 intoR𝑛 , and this second embedding allows us to ask how the tangent vectors𝛾 (𝑡 )
are changing as wemove along𝛾 , that is, it gives meaning to the expression (𝑑/𝑑𝑡 )𝛾 (𝑡 ) ∈ R𝑛 .
We then declare that the vectors𝛾 (𝑡 ) are parallel transported along𝛾 if this derivative is always
orthogonal to the tangent space at𝛾 (𝑡 ):

We can thinkof this condition as asking for the tangent vectors to “change as little as possible”
as wemove along𝛾 ; the vectors are forced to “bend” in the directions perpendicular to𝑀 just
to remain tangent to𝑀 , and we say they are parallel transported if they do not bend anymore
than this.

2.2 Fiber Bundle Connections
2.2.1 The Definition
In both cases, we seek a rule for lifting a path on amanifold up to a fiber bundle. It’s possible
to describe connections directly in terms of such a rule, but, like so many constructions in
differential geometry, it turns out to bemuch cleaner to start with the “infinitesimal” version
— away to lift tangent vectors rather than paths— and build a path-lifting rule out of that. So,
given a fiber bundle 𝜋 : 𝐸 → 𝑀 , a point 𝑒 ∈ 𝐸 , and a tangent vector 𝑣 ∈ 𝑇𝜋 (𝑒 )𝑀 , we want a way
to pick a tangent vector 𝑣 ∈ 𝑇𝑒𝐸 so that 𝜋∗ (𝑣 ) = 𝑣 .
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A tangent vector 𝑣 ∈ 𝑇𝐸 is called vertical if 𝜋∗ (𝑣 ) = 0. (The picture to have inmind is that
vertical tangent vectors “point along the fibers” of the bundle.) We will write𝑉 𝐸 ⊆ 𝑇𝐸 for the
subbundle consisting of the vertical vectors. There is no canonical way to define “horizontal”
tangent vectors just using the fiber bundle structure; any local trivialization of 𝐸 will give you
a way to do it, but different choices of trivialization will give different ones. A fiber bundle
connection on 𝐸 is exactly such a choice: it is a vector subbundle𝐻𝐸 ⊆ 𝑇𝐸 for which, at each
point 𝑒 ∈ 𝐸 , the projection 𝜋∗ |𝐻𝑒𝐸 : 𝐻𝑒𝐸 → 𝑇𝜋 (𝑒 )𝑀 is an isomorphism. (This is equivalent
to requiring that𝐻𝐸 is complementary to𝑉 𝐸 , i.e., that𝑇𝑒𝐸 = 𝑉𝑒𝐸 ⊕ 𝐻𝑒𝐸 at each 𝑒 .) Given a
connection, tangent vectors in𝐻𝐸 are called horizontal.

This is exactly what we need in order to lift tangent vectors: since 𝜋∗ |𝐻𝑒𝐸 is an isomorphism
for each 𝑒 ∈ 𝐸 , we can invert it to take any tangent vector 𝑣 ∈ 𝑇𝜋 (𝑒 )𝑀 to a tangent vector
𝑣∗𝑒 ∈ 𝐻𝑒𝐸 , which we will call the horizontal lift of 𝑣 to 𝑒 . We will frequently go back and forth
between the “horizontal subspace” and “horizontal lift” definitions of connections.

We will also frequently use the direct sum decomposition to split a vector 𝑣 ∈ 𝑇𝑒𝐸 into its
horizontal part 𝑣𝐻 ∈ 𝐻𝑒𝐸 and its vertical part 𝑣𝑉 ∈ 𝑉𝑒𝐸 . Note that, even though the vertical
subspace is well-defined without choosing a connection, we can’t take the vertical part of a
vector without one.

Given a path𝛾 : [0, 1] → 𝑀 , we say that a path𝛾 : [0, 1] → 𝐸 is a horizontal lift of𝛾 if, for
all 𝑡 ,

• 𝛾 ′ (𝑡 ) ∈ 𝐻𝛾 (𝑡 )𝐸 , and
• 𝜋∗ (𝛾 ′ (𝑡 )) = 𝛾 ′ (𝑡 ).

Under any choice of coordinates, these two conditions are equivalent to a system of ordinary
differential equations. This means that a fiber bundle connection on 𝐸 at least lets us lift paths
locally, that is, for each 𝑡 we can find a unique𝛾 : (𝑡 − 𝜖, 𝑡 + 𝜖) → 𝐸 satisfying these properties
for some 𝜖. If we can always lift the entire path we say that the connection is complete. While
not every fiber bundle connection is complete, all of the connections we will actually spend any
time considering in this article will be, including both of the examples discussed so far, so we
will not spendmuch time worrying about it.

Given a complete connection, we can take a path𝛾 : [0, 1] → 𝑀 and a point 𝑒 ∈ 𝐸𝛾 (0) and
produce a unique horizontal lift𝛾 with𝛾 (0) = 𝑒 . We will say that the point𝛾 (1) ∈ 𝐸𝛾 (1) is the
result of parallel transporting 𝑒 along𝛾 . Because it was defined in terms of solutions to ODE’s,
it is straightforward to check that reparametrizing𝛾 doesn’t affect the result of parallel transport
and, in particular, if𝛾 rev (𝑡 ) = 𝛾 (1 − 𝑡 ) is the reversal of𝛾 , then 𝑒 is also the result of parallel
transporting𝛾 (1) along𝛾 rev.

2.2.2 The Examples
Both of the “dragging procedures” we’ve described so far — the rolling marble and parallel
transport of tangent vectors on an embedded manifold — can be described as fiber bundle
connections.

In the case of the rollingmarble, we want a connection on the trivial fiber bundle overR2

with fiber 𝑆𝑂 (3). The fact that the fiber bundle in question is trivial gives an obvious way to lift
a tangent vector: if 𝑒 = (𝑥, 𝑔 ) ∈ R2 × 𝑆𝑂 (3) and we are given 𝑣 ∈ 𝑇𝑥R2, we could just let the
horizontal lift be (𝑣, 0) ∈ 𝑇𝑥R2 ×𝑇𝑔𝑆𝑂 (3) = 𝑇𝑒 (R2 × 𝑆𝑂 (3)). But this corresponds to sliding
the marble across the plane so that it never rotates, which is not what we want! The lifting
prescription that corresponds to the rolling we’re after will have to be something else.
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We’ll start by lifting tangent vectors from a point 𝑝 ∈ R2 to (𝑝, 1) ∈ R2 × 𝑆𝑂 (3), where 1
means the identity element. Suppose we want to lift 𝜕𝑥 ∈ 𝑇𝑝R2, the tangent vector pointing in
the positive 𝑥 direction. Pushing themarble in this directionmakes it rotate counterclockwise
about the positive 𝑦 axis, that is, using a right-handed coordinate system, in the direction that
moves the positive 𝑧 axis toward the positive 𝑥 axis. This rotation is generated by the element
we’ll call

𝑟𝑥 =
©«
0 0 1
0 0 0
−1 0 0

ª®¬ ∈ 𝑇1𝑆𝑂 (3) = 𝔰𝔬(3),

so (𝜕𝑥 )∗(𝑝,1) = (𝜕𝑥 , 𝑟𝑥 ). (Depending on the radius of themarble, there ought to be a coefficient in
front of this matrix, but let us assume for simplicity that it’s 1.) Similarly,

𝑟𝑦 =
©«
0 0 0
0 0 1
0 −1 0

ª®¬ .
So the horizontal subspace𝐻 (𝑝,1) (R2×𝑆𝑂 (3)) is spanned by the vectors (𝜕𝑥 , 𝑟𝑥 ) and (𝜕𝑦 , 𝑟𝑦 ),

and we can lift an arbitrary vector 𝑣 = 𝛼𝜕𝑥 + 𝛽𝜕𝑦 to (𝑣, 𝛼𝑟𝑥 + 𝛽𝑟𝑦 ). What about at points other
than the identity in 𝑆𝑂 (3)? Whatever configuration of themarble is represented by 1, a point
𝑔 ∈ 𝑆𝑂 (3) represents the configuration resulting from applying 𝑔 to it. If we were to then
rotate themarble again using some ℎ ∈ 𝑆𝑂 (3), the resulting configuration would of course be
represented by ℎ · 𝑔 ; in this sense 𝑆𝑂 (3) acts on the marble on the left. So, if we start at the
configuration 𝑔 and push themarble in 𝜕𝑥 direction, then, starting at the identity, we have first
performed 𝑔 , and then performed a small rotation in the 𝑟𝑥 direction. So the vector we want
is 𝑟𝑥 · 𝑔 = (𝑅𝑔 )∗ (𝑟𝑥 ). (The expression on the left has meaning only as a matrix; since 𝑅𝑔 acts
linearly on the coefficients of a matrix in 𝑆𝑂 (3), its action on tangent vectors is the same linear
map.)

We’ll next consider the second example about dragging tangent vectors on an embedded
manifold. Since tangent vectors are the things we intend to drag around𝑀 , we need a con-
nection on𝑇𝑀 , that is, a choice of horizontal subspace in each tangent space of the tangent
bundle. It is easy to get confused here! We are looking at𝑇 (𝑇𝑀 ), and the two𝑇 ’s appear for two
different reasons: the innermost𝑇𝑀 is here because this is the bundle on which we are trying
to define the connection, but the outermost𝑇 would be there regardless — connections are
always “about” tangent vectors in this second sense.

We’ll start by giving amore explicit descriptionof𝑇 (𝑇𝑀 )when𝑀 comeswith an embedding
inR𝑛 . Supposedim𝑀 = 𝑛−𝑑 , so that𝑀 is locally cut out by equations 𝑓𝛼 (𝑥) = 0 for𝛼 = 1, . . . , 𝑑 .
As we said before, we can use our embedding to think of tangent vectors as also living inR𝑛 ; if
we do this, then (𝑥,𝑣 ) ∈ R𝑛 ×R𝑛 lives in𝑇𝑀 if and only if, for each 𝛼,

(a) 𝑓𝛼 (𝑥) = 0, (b) (𝜕𝑣 𝑓𝛼) (𝑥) = 0.

Todeterminewhen some (𝑤,𝜂) ∈ R𝑛 ×R𝑛 is tangent to𝑇𝑀 at (𝑥,𝑣 )wehave to differentiate
both sets of equations (a) and (b). (Again, the two tangent vectors 𝑣 and 𝑤 appear for two
different reasons: 𝑣 is the vector we are attempting to drag,𝑤 is the direction in which we want
to drag it, and𝜂 represents the change in𝑣 thatmight ormight not constitute parallel transport.)
From (a) we get that (𝜕𝑤 𝑓𝛼) (𝑥) = 0, i.e.,𝑤 is also tangent to𝑀 ; since the original equation
doesn’t involve 𝑣 , this new one doesn’t involve𝜂 . Differentiating (b) gives us

(𝜕𝑣𝜕𝑤 𝑓𝛼) (𝑥) + (𝜕𝜂 𝑓𝛼) (𝑥) = 0.
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The thing to notice here is that, if we write𝜂 = 𝜂⊥ +𝜂 ∥ with𝜂 ∥ ∈ 𝑇𝑥𝑀 and𝜂⊥ orthogonal
to𝑇𝑥𝑀 , then this last condition determines𝜂⊥ completely for a given 𝑥 , 𝑣 , and𝑤 ; in fact, the
numbers (𝜕𝜂 𝑓𝛼) (𝑥) can be used as coordinates for (𝑇𝑥𝑀 )⊥. We referred earlier to the fact that,
in order for amoving tangent vector to stay tangent to𝑀 , it has tomove perpendicular to𝑀 .
Since𝜂 represents a change in 𝑣 ,𝜂⊥ is exactly this required perpendicular movement.

All of this so far just gives us the equations that cut out𝑇 (𝑇𝑀 ) inR𝑛 × R𝑛 × R𝑛 × R𝑛 . In
order to express our parallel transport condition from earlier in terms of a connection, we need
to say when some (𝑤,𝜂) ∈ 𝑇(𝑥,𝑣 ) (𝑇𝑀 ) ought to belong to the horizontal subspace;𝜂 represents
the first-order change in 𝑣 as we attempt to drag 𝑣 in the𝑤 direction, and (𝑤,𝜂) should be
horizontal when this change in 𝑣 coincides with our notion of parallel transport. Our condition
was that the change in the parallel transported vector should be perpendicular to𝑇𝑥𝑀 , so our
connection is defined by declaring that (𝑤,𝜂) ∈ 𝐻 (𝑥,𝑣 ) (𝑇𝑀 ) if and only if 𝜂 ∥ = 0. Since 𝜂⊥

was already determined by our choice of 𝑥 , 𝑣 , and𝑤 , this additional constraint completely
determines 𝜂. So, as must always be true for any connection, every𝑤 ∈ 𝑇𝑥𝑀 indeed has a
unique horizontal lift up to the tangent space to any point (𝑥,𝑣 ) in the fiber of𝑇𝑀 over 𝑥 .

The resulting connection on𝑇𝑀 depends crucially on the way we embedded𝑀 intoR𝑛 —
we used the embedding in order to talk about𝜂 at all, and we also used themetric onR𝑛 to split
𝜂 into𝜂⊥ and𝜂 ∥ . However, we will see later on that this connection is a bit less arbitrary than it
might appear: it will turn out to depend only on the Riemannianmetric on𝑀 that it inherits
from the embedding, rather than on any other details of the embedding itself.

3 Connections and Structure Groups
The bundles we will be most interested in having connections on are𝐺 -bundles, and in par-
ticular it will be important to knowwhat it means for a connection on a𝐺 -bundle to “respect
the𝐺 -bundle structure.” The idea should be that, whatever the structure in the fiber is that𝐺
is meant to preserve, parallel transport ought to preserve it as well. (For example, for vector
bundles, we want the parallel transport maps to be linear.)

Throughout this discussion we will move between two different ways of thinking about
𝐺 -bundles: in terms of their transition functions and in terms of their associated principal
bundles. In case any of this is unfamiliar, I’ve written a short supplement to this article going
through how all the definitions work. Even a reader who is already comfortable with both of
these perspectivesmight want to read the summary at the end of that supplement to see the
notation and terminology I’ll be using here.

There are also several ways to describe the structure we are about to discuss, and in this
section we will go through three of them: one coming from the description of a𝐺 -bundle in
termsof transition functions and two coming from the associatedprincipal bundle construction.
Each is illuminating in its own way, so we will spend some time getting to know them all. This
will, by necessity, be somewhat dry and technical; I’ve included a summary at the end of the
section for any readers whomight have gotten lost in the details.

3.1 Local Description
We start with a𝐺 -bundle 𝜋 : 𝐸 → 𝑀 with standard fiber 𝐹 and a fiber bundle connection
on 𝐸 . We’ll work for nowwith just one trivialization for our𝐺 -bundle, i.e., a diffeomorphism
𝜙 : 𝜋−1 (𝑈 ) →𝑈 × 𝐹 for some open set𝑈 ⊆ 𝑀 . After making this choice, it is straightforward
to say what we want from the parallel transport.

http://nicf.net/articles/connections-gbundles
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Given a path 𝛾 : [0, 1] → 𝑈 and a point 𝑒 ∈ 𝐸 , our connection gives us a horizontal lift
𝛾𝑒 : [0, 1] → 𝐸 for which𝛾𝑒 (0) = 𝑒 . Since the definition we are working towards is about what
this parallel transport procedure does to 𝑒 , we introduce notation that emphasizes this, writing
pt𝑡𝛾 (𝑒 ) = 𝛾𝑒 (𝑡 ). We’ll also write 𝜙2 : 𝜋−1 (𝑈 ) → 𝐹 for the second coordinate of our trivialization
𝜙 , so that 𝜙 (𝑒 ) = (𝜋 (𝑒 ), 𝜙2 (𝑒 )).

We then say that our connection is a𝐺 -bundle connection if the action of parallel transport
on the fibers always comes from the action of𝐺 on 𝐹 , that is, there is a map 𝑎𝛾 : [0, 1] → 𝐺 so
that, for each 𝑡 ,

𝜙 (pt𝑡𝛾 (𝑒 )) = (𝛾 (𝑡 ), 𝑎𝛾 (𝑡 ) · 𝜙2 (𝑒 )).
Note that, since the actionof𝐺 on𝐹 is effective, suchan𝑎𝛾 is unique if it exists. It is important

to emphasize that we want 𝑎𝛾 not to depend on 𝑒 : if, for example, we are working with vector
bundles and𝐺 = 𝐺𝐿 (𝑛), we want each pt𝑡𝛾 to be a linearmap, a conditionwhich is independent
of the point in the fiber we are applying the linear map to.

Of course, in order for this definition of𝐺 -bundle connections to be well-defined, we need
to check that it doesn’t depend on the trivialization we used to write it down. Because we are
working with𝐺 -bundles, any other trivialization 𝜙 : 𝜋−1 (𝑈 ) →𝑈 × 𝐹 differs from the one we
started with by amap 𝑔 :𝑈 → 𝐺 , that is, 𝜙 (𝜙−1 (𝑥, 𝑓 )) = (𝑥, 𝑔 (𝑥) · 𝑓 ). Suppose our connection
is a𝐺 -bundle connection according to the trivialization 𝜙 , so for any path𝛾 we have amap 𝑎𝛾
as above. Then

𝜙 (pt𝑡𝛾 (𝑒 )) = (𝛾 (𝑡 ), 𝑔 (𝛾 (𝑡 ))𝑎𝛾 (𝑡 ) · 𝜙2 (𝑒 ))
= (𝛾 (𝑡 ), 𝑔 (𝛾 (𝑡 ))𝑎𝛾 (𝑡 )𝑔 (𝛾 (0))−1 · 𝜙2 (𝑒 )).

So in fact our connection is a𝐺 -bundle connection according to 𝜙 as well, because we can take
𝑎𝛾 (𝑡 ) = 𝑔 (𝛾 (𝑡 ))𝑎𝛾 (𝑡 )𝑔 (𝛾 (0))−1 as the replacement for 𝑎𝛾 in the definition.

This proves that our definition is well-defined, but it’s still a bit inconvenient to work with.
After all, we defined connections in terms of tangent vectors, so it would be nice to define𝐺 -
bundle connections in a similar way. We can get what we want by differentiating the definition
we just gave. Take a tangent vector 𝑣 ∈ 𝑇𝑥𝑀 and a point 𝑒 in the fiber of 𝑥 . If our connection is
a𝐺 -bundle connection, then, imagining 𝑣 = 𝛾 ′ (0) for some path𝛾 , we can differentiate our
earlier description to see that our condition becomes

𝜙∗ (𝑣∗𝑒 ) = (𝑣,−𝐴 (𝑣 ) · 𝜙2 (𝑒 )),

where 𝐴 (𝑣 ) = −𝑎 ′
𝛾 (0) ∈ 𝔤. (Theminus sign is conventional; I’ll mention later why we include

it.) Here we are following the convention of writing, for 𝑋 ∈ 𝔤 and 𝑓 ∈ 𝐹 , 𝑋 · 𝑓 = (𝜎𝑓 )∗𝑋 ∈ 𝑇𝑓 𝐹 ,
where 𝜎𝑓 : 𝐺 → 𝐹 is given by 𝜎𝑓 (𝑔 ) = 𝑔 · 𝑓 .

I encourage you to verify that 𝐴 depends linearly on 𝑣 . We call a map𝑇𝑀 → 𝔤 which is
linear on the fibers of𝑇𝑀 a 𝔤-valued 1-form. It is the same as amap of vector bundles𝑇𝑀 → 𝔤,
where we follow the common convention of identifying a vector space with the corresponding
trivial vector bundle. If we have a basis for 𝔤, a 𝔤-valued 1-form can be thought of as just a list of
ordinary 1-forms on𝑀 , one for each coordinate.

Using this language, our connection is a𝐺 -bundle connection if and only if there is a 𝔤-
valued 1-form𝐴 satisfying𝜙∗ (𝑣∗𝑒 ) = (𝑣,−𝐴 (𝑣 ) ·𝜙2 (𝑒 )) for every𝑣 and 𝑒 . We proved one direction
of this equivalence just now; for the converse, I encourage you to check that in fact any 𝔤-valued
1-form 𝐴 gives rise to a connection according to this rule. Like our original definition, this one
superficially depends on the trivialization we picked. While we already know that it doesn’t
from the earlier discussion about parallel transport, it’s also worth seeing the coordinate change
formula for 𝐴 (𝑣 ) explicitly, which you will do in the exercises.
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It will be useful to have some notation for the way one recovers the parallel transport maps
𝑎𝛾 from 𝐴. By the way 𝐴 was constructed, 𝑎𝛾 satisfies the differential equation

𝑎 ′
𝛾 (𝑡 ) = −𝐴 (𝛾 ′ (𝑡 )) · 𝑎𝛾 (𝑡 )

with the initial condition 𝑎𝛾 (0) = 1. (Again, we write 𝑋 · 𝑔 = (𝑅𝑔 )∗𝑋 for 𝑔 ∈ 𝐺 and 𝑋 ∈ 𝔤.) If
𝑎𝛾 were a real-valued function, or even a function taking values in an abelian Lie group, this
equation would be satisfied by 𝑎𝛾 (𝑡 ) = exp

∫ 𝑡

0 −𝐴 (𝛾 ′ (𝑠 ))𝑑𝑠 .
Sadly, proving this in the abelian case requires using the fact that exp(𝑋 +𝑌 ) = exp𝑋 · exp𝑌

for𝑋 ,𝑌 ∈ 𝔤, which just isn’t true in general. Thinkingof elements of𝔤 as transformations that are
infinitesimally close to the identity, you can think about that exponential integral as aggregating
all of these small transformations aswemove across𝛾 . The problem in the nonabelian case then
arises because it matters what order we perform them in! The differential equation prescribes
this order.

This gives rise to a convention that is especially common in physics: we define the path-
ordered exponential integral of −𝐴 along𝛾 to be the solution to that differential equation, and
we write

𝑎𝛾 (𝑡 ) = Pexp
∫ 𝑡

0
−𝐴 (𝛾 ′ (𝑠 )).

(To avoid confusion with this notation, it’s probably best to just think of “Pexp
∫
” as a single

symbol.) When every 𝐴 (𝛾 ′ (𝑠 )) commutes with every other this coincides with the ordinary
exponential integral. You’ll explore this object a bit more in the exercises.

3.2 Principal and Induced Connections
There is also a more “global” picture of 𝐺 -bundle connections arising from the associated
principal bundle construction. In our previous discussion, we wanted to require the parallel
transport maps to come from the left𝐺 -action on the fiber, but this left𝐺 -action is only well-
defined after choosing a trivialization, leading us to the somewhat roundabout definition we
ended up with. But the situation is simpler for principal bundles: a map𝐺 → 𝐺 comes from
the left action of𝐺 on itself if and only if it commutes with the right action of𝐺 on itself, and
this right action extends to a well-defined right action on the entire principal bundle.

So, if 𝑃 is a principal 𝐺 -bundle over 𝑀 , a fiber bundle connection on 𝑃 is a 𝐺 -bundle
connection if and only if the horizontal subbundle𝐻𝑃 ⊆ 𝑇𝑃 is preserved by the right action of
𝐺 on𝑃 . Theseare calledprincipal connections. In termsof individualhorizontal subspaces, this
means that, for𝑝 ∈ 𝑃 , (𝑅𝑔 )∗ (𝐻𝑝𝑃 ) = 𝐻𝑝 ·𝑔𝑃 . In particular, the connection is fully determined
once we have specified one of the horizontal subspaces in each fiber.

This is equivalent to asking for parallel transport to commute with the right action of𝐺 .
That is, given a path𝛾 in𝑀 , then we want lifting to a path starting at𝑝 · 𝑔 ∈ 𝑃 to be the same as
first lifting to a path starting at𝑝 and applying 𝑔 pointwise along the lifted path. This is exactly
what we want in a case like our rollingmarble from the first section, where the action of𝐺 is a
symmetry of the entire situationwe are trying tomodel. Theway themarble is rotatedwhen you
roll it along a path has nothing to do with which configuration you chose to call the “identity” at
the start of the path.

This definition can be turned into a global description of all𝐺 -bundle connections, not just
the principal ones. Let 𝐸 be a𝐺 -bundle on𝑀 with fiber 𝐹 and let 𝑃 be its associated principal
bundle. If we’ve chosen a principal connection on 𝑃 , there is a natural way to produce a𝐺 -
bundle connection on 𝐸 . One example to keep in mind is to imagine how we could turn our
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rollingmarble connection onR2 × 𝑆𝑂 (3) and the left action of 𝑆𝑂 (3) on 𝑆2 into a connection
onR2 × 𝑆2 describing how the point of contact with the planemoves along the surface of the
marble as we roll it.

We will start with the case of trivial bundles. (This is only for motivation; the definition we
arrive at won’t actually depend on a choice of trivialization.) So let 𝑃 � 𝑀 ×𝐺 and 𝐸 � 𝑀 × 𝐹 ,
and suppose we’re given a path𝛾 : [0, 1] → 𝑀 . Using the principal connection on 𝑃 , lift𝛾 to a
path

𝛾 (𝑡 ) = (𝛾 (𝑡 ),𝛾2 (𝑡 )) ∈ 𝑀 ×𝐺,
choosing the lift starting at (𝛾 (0), 1). The points𝛾2 (𝑡 ) ∈ 𝐺 give us a family of transformations
of 𝐹 starting at the identity, and we will use them to define our desired lifted path: we want a
connection on 𝐸 for which𝛾 lifts to

𝛾 ′ (𝑡 ) = (𝛾 (𝑡 ),𝛾2 (𝑡 ) · 𝑓 ) ∈ 𝑀 × 𝐹 .

But, despite appearances, this condition doesn’t actually depend on the choice of trivi-
alization. Recall that we can describe the 𝐺 -bundle structure on any 𝐺 -bundle 𝐸 using an
isomorphism 𝐸 � 𝑃 ×𝐺 𝐹 . There is a projection map 𝜒 : 𝑃 × 𝐹 → 𝑃 ×𝐺 𝐹 sending each
(𝑝, 𝑓 ) ∈ 𝑃 × 𝐹 to its equivalence class under the relation (𝑝 · 𝑔 , 𝑓 ) ∼ (𝑝, 𝑔 · 𝑓 ). In this language,
the path lifting procedure we just described for trivial bundles is equivalent to using the con-
nection on 𝑃 and a constant path on 𝐹 to lift𝛾 all the way up to 𝑃 × 𝐹 and thenmapping it to 𝐸
using 𝜒. I encourage you to verify this for yourself.

To build a connection on 𝐸 we ought to see what this path lifting procedure does to tangent
vectors. Start with a principal connection𝐻 on 𝑃 , and suppose we are given 𝑥 ∈ 𝑀 , a tangent
vector𝑣 ∈ 𝑇𝑥𝑀 , and somepoint𝑒 in thefiber of𝑥 . Pick some (𝑝, 𝑓 ) ∈ 𝑃 ×𝐹 forwhich 𝜒(𝑝, 𝑓 ) = 𝑒 .
Then, using the given principal connection on𝑃 , let𝑣∗𝑝 be the horizontal lift of𝑣 to𝑇𝑝𝑃 . Thenwe
consider (𝑣∗𝑝 , 0) ∈ 𝑇(𝑝,𝑓 ) (𝑃 ×𝐹 ), and our new connection on𝐸 is defined by taking the horizontal
lift of 𝑣 to be 𝜒∗ ((𝑣∗𝑝 , 0)) ∈ 𝑇𝑒𝐸 . (I encourage you to check that the result doesn’t depend on
the choice of (𝑝, 𝑓 ) exactly because we started with a principal connection.) We call this the
connection on 𝐸 induced by the chosen connection on 𝑃 .

A fiber bundle connection on a𝐺 -bundle is a𝐺 -bundle connection if and only if it arises as
an induced connection in this way. In particular, this means that everything about a𝐺 -bundle
connection can be described in terms of the associated principal bundle, rather than anything
about the particular𝐺 -bundle in question. For this reason, principal connections play a very
important role in the general theory.

3.3 The Connection Form
A useful description of principal connections comes from looking at the vertical vectors rather
than the horizontal ones: specifying the horizontal subbundle𝐻𝑃 for which𝑇𝑃 = 𝐻𝑃 ⊕𝑉 𝑃 is
equivalent to specifying the projectionmap onto𝑉 𝑃 . That is, we can specify amap of vector
bundles 𝜔 : 𝑇𝑃 →𝑉 𝑃 with 𝜔2 = 𝜔 and recover𝐻𝑃 as its kernel.

One reason to do this is that the vertical subbundle of a principal bundle has a particularly
nicedescription. For𝑋 ∈ 𝔤, definea vectorfield𝑋 ♯ on𝑃 as follows. For𝑝 ∈ 𝑃 , write𝜎𝑝 (𝑔 ) = 𝑝 ·𝑔 ;
we then set 𝑋 ♯

𝑝 = (𝜎𝑝 )∗𝑋 . The vector field 𝑋 ♯ is called a fundamental vector field. This should
be thought of as the infinitesimal version of the action of𝐺 on 𝑃 ; if 𝑋 is a generator of a path in
𝐺 through the identity, then 𝑋 ♯ generates the corresponding flow on 𝑃 :
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The action of𝐺 on a principal𝐺 -bundle is fiberwise, so 𝑋 ♯ is vertical. Moreover, there are a
fewways to see that the resulting linear maps 𝔤 →𝑉𝑝𝑃 are isomorphisms. Themost direct is
probably to show that (𝜎𝑝 )∗ is injective and then count dimensions. Alternatively, if we pick a
trivialization and identify the fibers of 𝑃 with𝐺 , then our map 𝜎𝑝 is just the left-multiplication-
by-𝑝 map, which is a diffeomorphism on the fibers and therefore an isomorphism on their
tangent spaces. Whenwe think of the fibers as𝐺 ,𝑋 ↦→ 𝑋 ♯ then becomes the usual identification
of 𝔤 with left-invariant vector fields on𝐺 . (Notice how we ended up with a “left” here, even
though we started off by talking about the right𝐺 -action!)

So we can canonically identify𝑉 𝑃 with the trivial vector bundle on 𝑃 with fiber 𝔤, which
lets us write our projection map 𝜔 as a 𝔤-valued 1-form on 𝑃 . In order for 𝜔 to come from a
fiber bundle connection we need it to correspond to a projectionmap onto the vertical tangent
vectors. Since we are using the fundamental vector field construction to identify 𝔤 with𝑉 𝑃 , this
is equivalent to requiring, for each 𝑣 ∈ 𝔤, that𝜔 (𝑣 ♯) = 𝑣 everywhere. When this happens we call
𝜔 a connection form.

We should now ask whatmust be true for𝜔 to come from a principal connection. Requiring
the horizontal subspaces to be preserved by (𝑅𝑔 )∗ is the same as requiring the vertical projec-
tions to commute with (𝑅𝑔 )∗, so we should figure out what the action of (𝑅𝑔 )∗ looks like under
our identification of𝑉 𝑃 with 𝔤.

When we took a trivialization and examined the right action of𝐺 on itself, our fundamental
vector fields turned out to be left-invariant. So, if we have some tangent vector in𝑇𝑔𝐺 and want
to write it as 𝑣 ♯𝑔 for some 𝑣 ∈ 𝔤, we have to use the left action to identify𝑇𝑔𝐺 with𝑇1𝐺 = 𝔤. In
other words, if we want to knowwhich element of 𝔤 ought to correspond to (𝑅𝑔 )∗𝑣 , we need to
use (𝐿𝑔 −1 )∗ to bring it back to the identity. The resulting vector is (𝐿𝑔 −1 )∗ (𝑅𝑔 )∗𝑣 = (Ad 𝑔 −1) · 𝑣 ,
where Ad is the adjoint representation of𝐺 on its Lie algebra.

Putting this all together, then, we see that putting a principal connection on𝑃 is the same as
picking a 𝔤-valued 1-form 𝜔 on 𝑃 for which

• 𝜔 (𝑣 ♯𝑝 ) = 𝑣 for each 𝑣 ∈ 𝔤 and𝑝 ∈ 𝑃 , and
• 𝜔 ((𝑅𝑔 )∗𝑣 ) = (Ad 𝑔 −1) · 𝜔 (𝑣 ) for each 𝑣 ∈ 𝑇𝑃 and 𝑔 ∈ 𝐺 .

In this case we call 𝜔 a principal connection form.
As the reader may have guessed, our rollingmarble connection onR2 × 𝑆𝑂 (3) is a principal

connection. Indeed, when we talked about what the horizontal lift ought to look like at points
whose secondcoordinate isn’t the identity, wemadeexactly the choice thatmakes (𝑅𝑔 )∗ preserve
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the horizontal subspace. We specified that connection by giving, for each𝑝 ∈ R2, the horizontal
lifts of 𝜕𝑥 and 𝜕𝑦 to the tangent space𝑇(𝑝,1) (R2 × 𝑆𝑂 (3)) = R2 × 𝔰𝔬(3), calling the resulting
vectors (𝜕𝑥 , 𝑟𝑥 ) and (𝜕𝑦 , 𝑟𝑦 ) respectively. This is enough to tell us what 𝜔 has to look like: we are
forced to set

𝜔 (𝛼𝜕𝑥 + 𝛽𝜕𝑦 , 𝑣 ) = (Ad 𝑔 −1) · (𝛼𝑟𝑥 + 𝛽𝑟𝑦 + 𝑣 ).

3.4 Summary
Given a𝐺 -bundle 𝐸 over𝑀 with a connection𝐻 , we just described three equivalent ways to
decide whether𝐻 respects the𝐺 -bundle structure:

1. For each trivialization 𝜙 : 𝜋−1 (𝑈 ) → 𝑈 × 𝐹 , there is a (necessarily unique) 𝔤-valued
1-form 𝐴 on𝑈 so that

𝜙∗ (𝑣∗𝑒 ) = (𝑣,−𝐴 (𝑣 ) · 𝜙2 (𝑒 ))
for each 𝑒 ∈ 𝜋−1 (𝑈 ) and 𝑣 ∈ 𝑇𝜋 (𝑒 )𝑀 .

2. There is a principal connection on 𝐸 ’s associated principal bundle— that is, a connection
whose horizontal subspaces are preserved by the right action of𝐺 —and𝐻 arises as its
induced connection.

3. Additionally, we can specify a principal connection in terms of a principal connection
form 𝜔, which is a 𝔤-valued 1-form on 𝑃 satisfying:

• 𝜔 (𝑣 ♯𝑝 ) = 𝑣 for each 𝑣 ∈ 𝔤 and𝑝 ∈ 𝑃 , and
• 𝜔 ((𝑅𝑔 )∗𝑣 ) = (Ad 𝑔 −1) · 𝜔 (𝑣 ) for each 𝑣 ∈ 𝑇𝑃 and 𝑔 ∈ 𝐺 .

While 𝐴 and 𝜔 are both 𝔤-valued 1-forms on something, they are not the same object:
𝐴 lives on 𝑀 and is only well-defined relative to a choice of trivialization, and 𝜔 lives on a
principal bundle and is a well-defined global object. The relationship between the two can
be seen more explicitly by viewing a trivialization of a principal bundle over𝑈 as a section
𝑠 : 𝑈 → 𝜋−1 (𝑈 ) ⊆ 𝑃 , in which case 𝐴 = 𝑠 ∗𝜔, which I encourage you to check. (This is the
reason for theminus sign in the definition of 𝐴: if it didn’t appear there it would have to appear
here instead.)

Exercises
1. Fix a left action of𝐺 on 𝐹 , and let 𝐸 be a𝐺 -bundle over𝑀 with fiber 𝐹 with a𝐺 -bundle

connection. After possibly shrinking to an open subset of𝑀 , assume that𝐸 is trivializable,
and let 𝜙 : 𝐸 → 𝑀 × 𝐹 and 𝜙 : 𝐸 → 𝑀 × 𝐹 be two different trivializations. Write
𝐴 : 𝑇𝑀 → 𝔤 and 𝐴 : 𝑇𝑀 → 𝔤 for the 𝔤-valued 1-forms we get by applying the procedure
in this section to 𝜙 and 𝜙 respectively.
Show that, if 𝑔 : 𝐸 → 𝐺 is the map for which 𝜙 (𝜙−1 (𝑥, 𝑓 )) = (𝑥, 𝑔 (𝑥) · 𝑓 ), then, for
𝑣 ∈ 𝑇𝑥𝑀 ,

𝐴 (𝑣 ) = Ad(𝑔 (𝑥)) · 𝐴 (𝑣 ) − (𝑅𝑔 (𝑥 )−1 )∗𝑔∗𝑣.
When𝐺 ⊆ 𝐺𝐿 (𝑛) is a matrix group, it’s common to embed both the group and the Lie
algebra in the space of 𝑛 × 𝑛 matrices, which lets us identify the action of the group on
the Lie algebra with ordinarymatrix multiplication. When we do this, we can write this
formula as 𝐴 = 𝑔 · 𝐴 · 𝑔 −1 − 𝑑𝑔 · 𝑔 −1. This formula appears in physics, where it is called a
gauge transformation.
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2. Find an expression for the path-ordered exponential in terms of a series resembling the
power series expansion of the ordinary exponential function.

3. We saw that identifying a connectionwith a𝔤-valued 1-formon𝑀 requires a choice of triv-
ialization. Show that, by contrast, wemay regard the difference between two connections
as a 𝔤-valued 1-form on𝑀 withoutmaking any such choice. The space of connections
thus has the structure of an affine space over𝑇 ∗𝑀 ⊗ 𝔤.

4 Holonomy and Curvature
One thing onemight notice by playing around with the rollingmarble connection we’ve been
discussing is that it is possible for us to roll the marble around a closed loop and end up in a
different configuration than the one we started with. A simple example can be found by rolling
along a square path which is the right size to rotate the sphere by 𝜋/2 when rolled along each
edge: writing 𝑅𝑥 and 𝑅𝑦 for the rotations resulting from pushing themarble in the positive 𝑥
and 𝑦 directions, one can quickly verify that 𝑅−1

𝑦 𝑅−1
𝑥 𝑅𝑦𝑅𝑥 is a clockwise rotation by 𝜋/2 about

the 𝑧 axis. In terms of the 𝑆𝑂 (3)-bundle in which these configurations live, this means that any
horizontal lift of our square is not a loop, even though the square itself is. This phenomenon is
called “holonomy,” and in this section we will develop the tools to investigate it.

4.1 The Holonomy of a Loop
Suppose we have a𝐺 -bundle 𝐸 over𝑀 with a connection𝐻 . One of themany definitions of
𝐺 -bundle connections we discussed in the last section involved the requirement that, under
some choice of trivialization, the parallel transport maps should come from𝐺 . In view of this, it
seems natural to try to describe holonomy by associating an element of𝐺 to every loop in𝑀 .

This is indeed what we’ll do, but the details are not quite as straightforward as onemight
hope. Suppose we have a loop𝛾 : [0, 1] → 𝑀 with𝛾 (0) = 𝛾 (1) = 𝑥 ∈ 𝑀 ; for 𝑒 ∈ 𝐸 lying above
𝑥 we’ll write pt𝛾 (𝑒 ) for the result of parallel transporting 𝑒 around𝛾 , what we called pt1𝛾 (𝑒 ) in
our earlier notation.

Possibly after shrinking𝑀 to an open neighborhood of 𝑥 (and replacing𝛾 with its restriction
to this neighborhood), choose a trivialization 𝜙 : 𝐸 → 𝑀 × 𝐹 . From this we get a way to identify
the fiber over 𝑥 with 𝐹 , and so we indeed have that, for some 𝑎𝛾 ∈ 𝐺 ,

pt𝛾 (𝜙−1 (𝑥, 𝑓 )) = 𝜙−1 (𝑥, 𝑎𝛾 · 𝑓 )
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for all 𝑓 ∈ 𝐹 . The problem arises when we switch to a different trivialization 𝜙 : 𝐸 → 𝑀 × 𝐹 .
Since these are both𝐺 -bundle trivializations, we have 𝜙 (𝜙−1 (𝑥, 𝑓 )) = (𝑥, 𝑔 · 𝑓 ) for some 𝑔 ∈ 𝐺 ,
and as we saw in the last section this means that, for all 𝑓 ∈ 𝐹 ,

pt𝛾 (𝜙−1 (𝑥, 𝑓 )) = 𝜙−1 (𝑥, 𝑔 𝑎𝛾 𝑔 −1 · 𝑓 ).

So, in the absence of any further choices, 𝑎𝛾 is onlywell-definedup to conjugation. There is a
niceway to characterize the further choicewe need tomake in terms of principal bundles. If𝑃 is
the associated principal𝐺 -bundle to𝐸 , then picking an element𝑝 ∈ 𝑃𝑥 gives us away to identify
the fiber 𝐸𝑥 with 𝐹 . (This is explained in detail in the supplementary article on𝐺 -bundles.)
Once we’vemade this, we can use this identification to determine how𝐺 is supposed to act on
the fiber, and this solves the problem.

In detail, write 𝜒 : 𝑃 × 𝐹 → 𝑃 ×𝐺 𝐹 � 𝐸 for the map taking (𝑝, 𝑓 ) to its equivalence class.
If we pick some 𝑝 ∈ 𝑃𝑥 , then, since𝐺 acts freely and transitively on the fibers of 𝑃 , we have
pt𝛾 (𝑝) = 𝑝 · 𝑎𝛾 for a unique 𝑎𝛾 ∈ 𝐺 . By the definition of the induced connection on 𝐸 , we have
pt𝛾 (𝜒(𝑝, 𝑓 )) = 𝜒(𝑝 · 𝑎𝛾 , 𝑓 ) = 𝜒(𝑝, 𝑎𝛾 · 𝑓 ). The choice of𝑝 has therefore resolved our ambiguity.

Given a principal𝐺 -bundle 𝑃 over𝑀 with a chosen connection, a point𝑝 ∈ 𝑃 , and a loop
𝛾 : [0, 1] → 𝑀 with 𝛾 (0) = 𝛾 (1) = 𝜋 (𝑝), we will define the holonomy of 𝛾 at 𝑝 to be the
unique element hol𝑝 (𝛾 ) ∈ 𝐺 for which pt𝛾 (𝑝) = 𝑝 · hol𝑝 (𝛾 ). Because it is defined in terms of
parallel transport, the holonomy of a loop inherits the nice properties involving its dependence
on𝛾 : it doesn’t depend on how𝛾 is parametrized, and, writing𝛾 · 𝛾 ′ for the loop obtained by
concatenating 𝛾 and 𝛾 ′ in that order, we have hol𝑝 (𝛾 · 𝛾 ′) = hol𝑝 (𝛾 ) hol𝑝 (𝛾 ′). In particular,
writing𝛾 rev (𝑡 ) = 𝛾 (1 − 𝑡 ), this means hol𝑝 (𝛾 rev) = hol𝑝 (𝛾 )−1.

4.2 Splitting Up a Holonomy
The fact that we can “undo” the effect of parallel transport by backtracking along a path has
an interesting consequence: it allows us to split up the holonomy of a loop into a product of
holonomies of smaller loops. If our original loop is contractible, we can split our original loop
more andmore finely in this way, ending up with an expression for our original holonomy in
terms of the holonomies of tiny loops spread across the area enclosed by the original loop.

Here we seem not to quite end up with loops but rather with “lasso” shapes of the form
𝛽 ·𝛾 ·𝛽−1, where 𝛽 is a path and𝛾 is a loop at 𝛽 (1). Butwe can in factwrite these lassoholonomies
as loop holonomies: using the fact that parallel transport commutes with the right𝐺 action, we
see that

pt𝛽 (𝑝) · hol𝑝 (𝛽 · 𝛾 · 𝛽−1) = pt𝛽 (𝑝 · hol𝑝 (𝛽 · 𝛾 · 𝛽−1)) = pt𝛽 (pt𝛽 ·𝛾 ·𝛽−1 (𝑝)) = pt𝛾 (pt𝛽 (𝑝))

and therefore hol𝑝 (𝛽 · 𝛾 · 𝛽−1) = holpt𝛽 (𝑝 ) (𝛾 ).

http://nicf.net/articles/connections-gbundles
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Splitting up the large loop in this way therefore allows us to express our original holonomy
as a product of the holonomies of many tiny loops starting at points throughout the inside of
the original loop. This might remind some readers of Stokes’ Theorem: we have an object that
depends only on the boundary of some region, and we seem to have a recipe for relating it to
an aggregate of many other objects associated with points spread out over the interior of that
region. This analogy suggests that we ought to be able to express the parallel transport as some
sort of integral over the interior of the loop of some sort of exterior derivative.

Themain obstacle preventing this from being straightforward is the fact that, when𝐺 is not
abelian, we need to pay attention both to the order in which we multiply the holonomies of
the small loops and the points in 𝑃 where those loops are based. The situation is similar to the
one that led us to introduce the path-ordered exponential for expressing the result of parallel
transport on a trivialized𝐺 -bundle in terms of the 𝔤-valued 1-form 𝐴; the difference is that we
nowwant to integrate over a surface rather than a path.

I wrote a supplement to this article in which I go through this process explicitly, seeing
how, by carefully splitting𝛾 into smaller loops, we can write the holonomy as a (properly path-
ordered) integral of a 𝔤-valued 2-form over a surface bounded by the loop. The exact form of
this integral can be found in the supplement, but it turns out to bemuch less important than
the resulting object: we define the curvature form of our connection to be the 𝔤-valued 2-form
Ω on 𝑃 given by

Ω(𝑣,𝑤 ) = 𝑑𝜔 (𝑣𝐻 ,𝑤𝐻 ),
where again 𝑣𝐻 is the horizontal part of the vector 𝑣 .

If 𝑣 and𝑤 are tangent vectors at 𝑥 ∈ 𝑀 and𝑝 ∈ 𝑃 is in the fiber over 𝑥 , you should think of
−Ω(𝑣∗𝑝 ,𝑤 ∗

𝑝 ) as the “infinitesimal holonomy” at𝑝 of a tiny parallelogram-shaped loop formed by
𝑣 and𝑤 , telling us how far we end up displaced from𝑝 when we go around the loop. A rigorous
justification of this picture is essentially a subset of the argument in the supplement, but a
looser argument might also help convince you that this is the right idea to have inmind.

Extend 𝑣 and𝑤 locally to vector fields𝑉 and𝑊 for which [𝑉 ,𝑊 ] = 0. There’s no reason for
the horizontal lifts𝑉 ∗ and𝑊 ∗ to commute, but I encourage you to check that we at least have
that 𝜋∗ ( [𝑉 ∗,𝑊 ∗]) = 0, so their Lie bracket is vertical. Now,

Ω(𝑉 ∗,𝑊 ∗) = 𝑑𝜔 (𝑉 ∗,𝑊 ∗) =𝑉 ∗ (𝜔 (𝑊 ∗)) −𝑊 ∗ (𝜔 (𝑉 ∗)) − 𝜔 ( [𝑉 ∗,𝑊 ∗]).

The first two terms on the right are zero, since they involve applying 𝜔 to a horizontal vector
field. So we’re just left with −Ω(𝑉 ∗,𝑊 ∗) = 𝜔 ( [𝑉 ∗,𝑊 ∗]).

The Lie bracket on the right-hand side can be thought of as the result of flowing a small
amount around𝑉 ∗,𝑊 ∗, −𝑉 ∗, then −𝑊 ∗ and seeing where we end up; since the Lie bracket is
vertical you should picture the result as lying in the same fiber that we started in. In other words,
since the corresponding parallelogram closes up down on𝑀 , we have a sort of infinitesimal
version of the picture of the holonomy used to introduce the previous subsection. Applying 𝜔
to this vertical vector then simply takes it to the corresponding element of 𝔤.

4.3 Holonomy Groups
For a connection𝐻 on 𝑃 and a point𝑝 ∈ 𝑃 , consider the subgroup Hol𝑝 (𝐻 ) ⊆ 𝐺 consisting of
the holonomies at𝑝 of all loops based at 𝜋 (𝑝). This is called the holonomy group at𝑝 . We saw
earlier that switching out the base point has the effect of replacing the holonomy of a loop with
a conjugate. This, combined with the similar result relating holonomies of loops to holonomies
of “lassos” from before, implies that (as long as the basemanifold is connected) the holonomy

http://nicf.net/articles/connections-holonomy-and-curvature
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groups at any two points are conjugate as subgroups of 𝐺 . This allows us to talk about the
holonomy group of the connection without specifying𝑝 , with the understanding that it is only
well-defined up to conjugacy.

A connection whose curvature is everywhere zero is called flat. On bundles with flat con-
nections, contractible loops have no holonomy. The word “contractible” is crucial here. We
define the restricted holonomy group at𝑝 to be the subgroup Hol0𝑝 (𝐻 ) ⊆ Hol𝑝 (𝐻 ) consisting
of holonomies of contractible loops; flatness implies that the restricted holonomy group is
trivial, but the full groupmight not be. A good example comes from the case where𝐺 is discrete,
so that𝑃 is a covering space. Since the Lie algebra of a discrete group is zero, the zero form is the
only 𝔤-valued 1-formon𝑃 , so there is only one connectionwe can put on𝑃 and that connection
is flat. But this is a covering space, and non-contractible loops can definitely have nontrivial
holonomy.

There is a sense, though, in which having a nontrivial homotopy class is the only thing that
can “go wrong” with our attempt to build all holonomies out of curvature. Taking a homotopy
class in 𝜋1 (𝑀,𝜋 (𝑝)) to the holonomy of any representative turns out to give a well-defined
surjective homomorphism 𝜋1 (𝑀,𝜋 (𝑝)) → Hol𝑝 (𝐻 )/Hol0𝑝 (𝐻 ). The holonomy group therefore
captures two distinct phenomena about loops in𝑀 : restricted holonomy, which can be de-
scribed entirely in terms of the curvature of the connection, and their homotopy classes, which
are described by the fundamental group.

Abovewe saw thatΩ(𝑋 ,𝑌 ) = −𝜔 ( [𝑋 𝐻 ,𝑌 𝐻 ])𝑝 for any vectorfields𝑋 and𝑌 . If our connection
is flat, this quantity is always zero, whichmeans that the Lie bracket of two horizontal tangent
vectors is always horizontal. (Curvature— and therefore restricted holonomy— can therefore
be thought of as the failure of commuting vector fields to keep commuting after taking their
horizontal lifts.) This gives a nice alternative characterization of flatness: recall Frobenius’s
Theorem, which says that, given a subbundle of the tangent bundle which is closed under Lie
brackets, we can construct a submanifold passing through anypointwhose tangent bundle lines
up with the chosen subbundle. Applying this to the horizontal subbundle of a flat connection
tells us that, in this case, we can build horizontal lifts of entire open sets of the basemanifold,
not just paths on it. The horizontal lift of any loop contained in one of these open sets therefore
has no choice but to close up.

Exercises
1. Find the curvature of the rolling marble connection introduced in the first section. Verify

the formula from this section in this case by comparing the holonomy around the unit
square to the integral of the curvature over its interior.

2. Suppose 𝛼 is a 𝑝-form on a principal bundle 𝑃 , and we have chosen a connection on
𝑃 with connection form 𝜔. We define the exterior covariant derivative of 𝛼 to be the
(𝑝 + 1)-form𝐷𝛼 given by

𝐷𝛼 (𝑋1, . . . , 𝑋𝑝+1) = 𝑑𝛼 (𝑋 𝐻
1 , . . . , 𝑋

𝐻
𝑝+1).

For example, this means that the curvature formΩ is𝐷𝜔.

(a) Supposeweare givena𝐺 -representation 𝜌 : 𝐺 → 𝐺𝐿 (𝑉 ) andwebuild theassociated
vector bundle 𝐸 = 𝑃 ×𝐺 𝑉 . Then an 𝐸 -valued 𝑝-form is defined to be a section of
∧𝑝 (𝑇 ∗𝑀 ) ⊗ 𝐸 . Construct a natural one-to-one correspondence between 𝐸 -valued
𝑝-forms on𝑀 and𝑉 -valued𝑝-forms 𝛼 on 𝑃 satisfying:
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• For any 𝑣1, . . . , 𝑣𝑝 ∈ 𝑇𝑃 and 𝑔 ∈ 𝐺 ,
𝛼 ((𝑅𝑔 )∗𝑣1, . . . , (𝑅𝑔 )∗𝑣𝑝 ) = 𝜌 (𝑔 −1) · 𝛽 (𝑣1, . . . , 𝑣𝑝 ).

• 𝛼 (𝑣1, . . . , 𝑣𝑝 ) is zero if any 𝑣𝑖 is vertical.
We’ll call 𝑝-forms on 𝑃 satisfying these two conditions tensorial. Note that Ω is
tensorial with 𝜌 as the adjoint representation of𝐺 , so we say that it corresponds to
an “(Ad𝑃 )-valued 2-form” on𝑀 . But 𝜔 is not, since it doesn’t satisfy the second
condition.

(b) Suppose that 𝛼 is tensorial. Given 𝑋 ∈ 𝔤, show that
(L𝑋 ♯𝛼) (𝑣1, . . . , 𝑣𝑛) = −𝜌 ′ (𝑋 ) · 𝛼 (𝑣1, . . . , 𝑣𝑛),

where 𝜌 ′ is the Lie algebra representation corresponding to 𝜌 .
(c) Show that if 𝛼 is tensorial, then

𝐷𝛼 (𝑣1, . . . , 𝑣𝑝+1) = 𝑑𝛼 (𝑣1, . . . , 𝑣𝑝+1) +
𝑝+1∑︁
𝑖=1

(−1)𝑖+1𝜌 ′ (𝜔 (𝑣𝑖 )) · 𝛼 (𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑝+1).

[Hint: First reduce to the case where exactly one of the inputs is vertical and the rest
are horizontal. It will be useful to extend the horizontal vectors to𝐺 -invariant vector
fields and the vertical vector to a fundamental vector field, then use the previous
part.]

(d) Using a similar argument, prove thatΩ(𝑣1, 𝑣2) = 𝑑𝜔 (𝑣1, 𝑣2) + [𝜔 (𝑣1), 𝜔 (𝑣2)]. (This
is called theMaurer-Cartan formula. Note that, since 𝜔 is not tensorial, we cannot
just apply the previous part.)

(e) Show that𝐷Ω = 0. This fact is called the second Bianchi identity; you’ll prove the
first in the exercises to the next section.

5 Connections on the Tangent Bundle
Connections on the tangent bundle of a manifold form one of themost important cases of the
theory, and it is in fact in this settingwhere the theorywasfirst developed. In this setting, tangent
vectors are both thedirections inwhichweparallel transport and theobjectswe are transporting,
and this creates a few interesting “coincidences” that enrich the theory a bit compared to the
general case.

At the beginning of this article we discussed a connection which allows one to drag tangent
vectors along a submanifold ofR𝑛 . We hinted briefly at the time that this is a special case of
a more general method for building a connection on a Riemannian manifold, and that the
resulting connection doesn’t actually depend on any embedding. In this section we will give an
outline of how this works before using it to do a bit of concrete geometry.

5.1 Connections on Vector Bundles
We’ll start with some remarks about connections on vector bundles in general, not necessary
the tangent bundle. Recall that we can think of a rank-𝑛 vector bundle as a𝐺𝐿 (𝑛)-bundle with
standard fiberR𝑛 . A vector bundle connection is then just a𝐺𝐿 (𝑛)-bundle connection on a
vector bundle. But the vector bundle structure turns out to give us a quite different-looking (but
still equivalent) characterization of these connections, which we’ll now lay out.
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5.1.1 The Covariant Derivative
Suppose 𝐸 is a vector bundle of rank 𝑛 over𝑀 . We will arrive at our new description by taking a
section 𝑠 of 𝐸 and attempting to ask for the “derivative of 𝑠” in a particular direction. Without
any extra structure on 𝐸 , there is of course no way to give a coherent meaning to this question:
derivatives involve comparing values at different points, but the values of 𝑠 land in different
fibers of 𝐸 .

However, if we’re given a connection𝐻 on 𝐸 , then we have a way past this problem. For a
point 𝑥 ∈ 𝑀 and a tangent vector 𝑣 ∈ 𝑇𝑥𝑀 , consider 𝑠∗𝑣 ∈ 𝑇𝑠 (𝑥 )𝐸 . If we think of this vector as a
representation of how 𝑠 is changing as wemove along 𝑣 , we can use our connection to extract
its vertical part (𝑠∗𝑣 )𝑉 ∈ 𝑉𝑠 (𝑥 )𝐸 , which we can interpret as telling us how 𝑠 is changingwithin
the fiber as wemove along 𝑣 .

So far we have not used the fact that 𝐸 is a vector bundle, but nowwe will: since the fibers of
𝐸 are vector spaces, there is a canonical isomorphism 𝜖𝑒 :𝑉𝑒𝐸 → 𝐸𝜋 (𝑒 ) identifying the vertical
tangent spaces in each fiber with the fiber itself. From our section and our tangent vector we
therefore have produced a point 𝜖𝑠 (𝑣 ) ((𝑠∗𝑣 )𝑉 ) ∈ 𝐸𝑥 . We call this the covariant derivative of 𝑠 in
the direction of 𝑣 , and write it ∇𝑣 𝑠 . It is not difficult to show that, for any curve𝛾 : [0, 1] → 𝑀

through 𝑥 with𝛾 ′ (0) = 𝑣 , we also have

∇𝑣 𝑠 = 𝑑

𝑑𝑡

����
𝑡=0

pt−𝑡𝛾 [𝑠 (𝛾 (𝑡 ))].

In particular, this means that ∇𝛾 ′ (𝑡 )𝑠 = 0 for all 𝑡 if and only if 𝑠 is parallel transported along
𝛾 . Because we started with a𝐺𝐿 (𝑛)-bundle connection, the parallel transport maps are all
linear. We can use this to prove the following properties:

1. ∇ is linear in 𝑣 , i.e., for 𝛼, 𝛽 ∈ R,

∇𝛼𝑣+𝛽𝑣 ′𝑠 = 𝛼∇𝑣 𝑠 + 𝛽∇𝑣 ′𝑠 .

2. ∇𝑣 isR-linear in 𝑠 , i.e., for 𝛼, 𝛽 ∈ R,

∇𝑣 (𝛼𝑠 + 𝛽𝑠 ′) = 𝛼∇𝑣 𝑠 + 𝛽∇𝑣 𝑠 ′.

3. ∇𝑣 is a derivation in the following sense: for a smooth function 𝑓 on𝑀 ,

∇𝑣 ( 𝑓 𝑠 ) = 𝑑 𝑓 (𝑣 ) · 𝑠 (𝑥) + 𝑓 (𝑥) · ∇𝑣 𝑠 .

4. ∇𝑣 𝑠 depends smoothly on the point 𝑥 , i.e., if 𝑋 is a smooth vector field on𝑀 then ∇𝑋 𝑠 is a
smooth section of 𝐸 .

(The linearity of parallel transport is necessary to prove (2) and (3); one can prove (1) directly
from the earlier definition of ∇ in terms of tangent vectors.)

Any vector bundle connection gives rise to a covariant derivative operator, and in fact this
process is invertible: any ∇which satisfies these four properties comes from a unique vector
bundle connection. (I’ll leave the proof of this to you.) Many authors therefore use the word
“connection” to refer to refer only to covariant derivatives; if you are only concerned with vector
bundles then they are equivalent.
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5.1.2 Covariant Derivatives and Principal Connections
It will useful — and good practice— tomake explicit the link between this covariant derivative
description of connections and the principal connections we’ve spent most of our time with so
far. First, recall that there is a concrete way to think about the associated principal bundle of
a vector bundle 𝐸 : we can identify it with the frame bundle 𝐹𝐸 . A point𝑢 ∈ 𝐹𝐸 is an ordered
basis of the corresponding fiber of 𝐸 , that is, an isomorphism of vector spaces𝑢 : R𝑛 → 𝐸𝜋 (𝑢 ) .

This gives us a way to turn a section 𝑠 : 𝑀 → 𝐸 into anR𝑛-valued function on 𝐹𝐸 that we’ll
call 𝜙𝑠 : if𝑢 ∈ 𝐹𝐸 is a point in the fiber of 𝑥 ∈ 𝑀 , then we use𝑢 to identify 𝐸𝑥 withR𝑛 and let
𝜙𝑠 (𝑢) be the point corresponding to 𝑠 (𝑥). That is,

𝜙𝑠 (𝑢) = 𝑢−1 (𝑠 (𝜋 (𝑢))).

(Less formally, 𝜙𝑠 (𝑢) gives us the “coordinates” of 𝑠 (𝜋 (𝑢)) according to the frame𝑢 .)
We can use this to characterize the covariant derivative directly in terms of the principal

connection: given a section 𝑠 and a tangent vector 𝑣 ∈ 𝑇𝑥𝑀 , we have

∇𝑣 𝑠 = 𝑢 (𝑣∗𝑢𝜙𝑠 )

for any frame𝑢 ∈ 𝐹𝐸𝑥 . (Checking this is a matter of pasting the right definitions together, but I
encourage the interested reader to go through it.) With this correspondence in hand wemay
import the objects we described in terms of principal connections to our new setting. We’ll
sketch how this works for the curvature form, encouraging the reader to try to fill in themissing
steps along the way.

First, we should be clear about what sort of object we ought to expect. The curvature form
takes a pair of vectors and gives the result of parallel transport around a small parallelogram
with those vectors as its edges. But on a vector bundle, transporting around a loop gives a linear
map from the fiber to itself. Therefore, our vector bundle version of the curvature form should
be an End(𝐸 )-valued 2-form on𝑀 .

Take two vector fields 𝑋 and𝑌 on𝑀 and some𝑢 ∈ 𝐹𝐸 . If the vertical part of [𝑋 ∗,𝑌 ∗]𝑢 is 𝐵♯
𝑢

for 𝐵 ∈ 𝔤𝔩(𝑛), we have
Ω(𝑋 ∗,𝑌 ∗) = −𝜔 ( [𝑋 ∗,𝑌 ∗]) = −𝐵.

But, having chosen a frame, 𝐸𝜋 (𝑢 ) is identified withR𝑛 , and therefore End(𝐸 )𝜋 (𝑢 ) is identified
with𝔤𝔩(𝑛). Wemay therefore think of−𝐵 as an endomorphismof the fiber, and it is aworthwhile
exercise to check that the resultingmap doesn’t depend on the choice of𝑢 .

Using our new description of the covariant derivative, we can make this endomorphism
appear in a different way. For any section 𝑠 , define

𝑅 (𝑋 ,𝑌 )𝑠 = ∇𝑋∇𝑌 𝑠 − ∇𝑌 ∇𝑋 𝑠 − ∇[𝑋 ,𝑌 ]𝑠 ;

𝑅 is called the Riemann curvature tensor of ∇. In the exercises to the previous section, you
built a one-to-one correspondence between vector-bundle-valued𝑝-forms on𝑀 and𝑝-forms
on 𝐸 satisfying certain properties; if you trace that correspondence through forΩ you will see
that you get𝑅 , using the fact that the associated bundle (𝐹𝐸 ×𝐺𝐿 (𝑛 ) Ad𝐺𝐿 (𝑛)) is End(𝐸 ). But,
since it’s easy to get lost in that considerable amount of abstraction, we’ll also sketch a direct
argument that, for any 𝑥 ∈ 𝑀 ,𝑅 (𝑋 ,𝑌 )𝑥 is the same endomorphism of the fiber over 𝑥 we built
in the last paragraph.

Directly from the earlier discussion, we have

𝑅 (𝑋 ,𝑌 )𝑠 = 𝑢 ( [𝑋 ∗,𝑌 ∗]𝑢𝜙𝑠 − [𝑋 ,𝑌 ]∗𝑢𝜙𝑠 ).
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But, since [𝑋 ∗,𝑌 ∗]𝑢 and [𝑋 ,𝑌 ]∗𝑢 have the same projection onto𝑀 and [𝑋 ,𝑌 ]∗𝑢 is horizontal,
their difference is the vertical part of [𝑋 ∗,𝑌 ∗]𝑢 ! The right side is therefore equal to𝑢 (𝐵♯

𝑢𝜙𝑠 ). In
particular, we are applying a vertical tangent vector to 𝜙𝑠 , so the result doesn’t depend on the
values of 𝜙𝑠 in other fibers.

But we know already that, after using𝑢 to move the resulting vector inR𝑛 back to the fiber
of 𝐸 , that the final result can’t depend on which 𝑢 we picked, because we defined 𝑅 without
referring to𝑢 . So in fact𝑅 (𝑋 ,𝑌 )𝑠 doesn’t depend on the values of 𝑠 at any point but the one we
are evaluating it at, and therefore it indeed gives us an endomorphism of the fiber.

It remains to check that this is in fact the same endomorphism as the one we extracted from
Ω; after disentangling themany correspondences involved, this amounts to verifying that

𝐵
♯
𝑢𝜙𝑠 = −𝐵 (𝜙𝑠 (𝑢)).

I will leave this last step to the reader as well, with the hint that theminus sign in this formula
arises in a sense from the inverse appearing in the definition of 𝜙𝑠 .

5.2 Torsion
For the rest of this section, we will focus on the case where 𝐸 is the tangent bundle of𝑀 . (This
is the setting of our second running example about dragging tangent vectors along embedded
submanifolds.) This is the historically earliest setting where the theory of connections arose,
and there are a few features that are special to this case. One of those features in particular
can be quite difficult to wrap one’s head around, and I therefore wanted to spend some time
motivating it from a geometric perspective before movingmuch further.

For vector fields 𝑋 and𝑌 , there is a common intuitive picture of the geometric meaning
of [𝑋 ,𝑌 ]. Starting at some point𝑝 , move some small distance 𝜖 in the direction of 𝑋 , ending
up at 𝑝 + 𝜖𝑋𝑝 . (Suppose we have chosen coordinates so that we may attach meaning to this
expression.) From there, move along𝑌 by 𝛿 , but using the value of𝑌 at our new point, not the
original vector𝑌𝑝 . Our final point is

𝑝 + 𝜖𝑋𝑝 + 𝛿𝑌𝑝+𝜖𝑋𝑝 = 𝑝 + 𝜖𝑋𝑝 + 𝛿 (𝑌𝑝 + 𝜖𝜕𝑋𝑝𝑌 +𝑂 (𝜖2)),
where 𝜕𝑋𝑝 denotes the directional derivative, an object that again can only be discussed relative
to our chosen coordinates.

We can compare this to the point we would land at if we hadmoved in the other order, first
by 𝛿 along𝑌 and then by 𝜖 along 𝑋 . The difference is, modulo terms of order at least 3 in 𝜖 and
𝛿 ,

𝜖𝛿 (𝜕𝑋𝑝𝑌 − 𝜕𝑌𝑝𝑋 ) = 𝜖𝛿 [𝑋 ,𝑌 ]𝑝 .

p p + ǫXp

p + δYp

p + ǫXp + δYp+ǫXp

p + δYp + ǫXp+δYp

ǫδ[X ,Y ] +O ((ǫ, δ)3)
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In this sense, the Lie bracket measures, to second order in 𝜖 and 𝛿 , how close the parallelo-
gram formed by our two vector fields comes to closing up.

Putting a connection on𝑇𝑀 gives us another way to express the difference between the
these two paths. The ordinary directional derivative of the vector field𝑌 gives the difference, to
first order, between𝑌𝑝+𝜖𝑋𝑝 and𝑌𝑝 . The covariant derivative tells us instead about the difference
between𝑌𝑝+𝜖𝑋𝑝 and the parallel transport of𝑌𝑝 along the first segment of our path. That is, if we
write𝑌 ∥

𝑝 for this parallel transport, we have

𝑌𝑝+𝜖𝑋𝑝 = 𝑌
∥
𝑝 + 𝜖∇𝑋𝑝𝑌 .

If wemake this substitution in the difference of the two endpoints, we get (againmodulo
terms of order ≥ 3) that

𝜖𝛿 [𝑋 ,𝑌 ]𝑝 = 𝜖𝛿 (∇𝑋𝑝𝑌 − ∇𝑌𝑝𝑋 ) + 𝜖𝑋𝑝 + 𝛿𝑌 ∥
𝑝 − 𝜖𝑋

∥
𝑝 − 𝛿𝑌𝑝 .

p

ǫXp

δYp

δYp+ǫXp

ǫXp+δYp

δY ‖
p

ǫX ‖
p

ǫδ[X ,Y ]

ǫδ∇XpY

ǫδ∇Yp X

The sum of the last four terms tells us whether the parallelogram formed by the parallel-
transported vectors closes up to second order. Importantly, unlike the Lie bracket, whether this
happens depends only on the connection and the tangent vectors 𝑋𝑝 and𝑌𝑝 , rather than on the
vector fields they came from.

We can look at this in two ways. First, we just saw how ∇𝑋𝑌 − ∇𝑌 𝑋 can be seen as a sort of
alternate version of the Lie bracket — it’s what we get if we swap out the dragging of vectors
allowed by our coordinate system for the one allowed by the connection. Wemight want this
“alternate Lie bracket” to equal the actual Lie bracket, in which case we’ve learned that this will
happen if and only if the parallelogram formed by the parallel-transported vectors closes up.
(In the diagram, we can see that the difference of the two vectors involving covariant derivatives
will equal the Lie bracket exactly when the tails of the arrows line up.)

Alternatively, wemight start with the wish that our connection alwaysmakes parallelograms
like this close up, in which case we’ve learned that this depends on the vanishing of the vector
field

𝑇 (𝑋 ,𝑌 ) = ∇𝑋𝑌 − ∇𝑌 𝑋 − [𝑋 ,𝑌 ].
The geometric argument about the closing of parallel-transported parallelograms implies

that the value of𝑇 at a point depends only the values of 𝑋 and𝑌 at that point, and one can also
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check this directly from the formula.𝑇 therefore is a section of Hom(Λ2𝑇𝑀 ,𝑇𝑀 ); we call it the
torsion tensor of our connection. When dealing with connections on the tangent bundle, it is
common to consider only the torsion-free ones; we’ve just seen one reason onemight want this,
and we will see a fewmore over the course of this section.

Finally, there is an important difference between torsion and curvature that is worthmen-
tioning. We saw that when a connection is flat, we can conclude that the holonomy around
any contractible loop is trivial, so one might expect a similar fact to be true of torsion-free
connections. And there almost is: we can formulate a coordinate-free version of the argument
we started off with in terms of parallel transport along geodesics, a notion we will discuss later.
But the resultmight be slightly disappointing: we still can only conclude that the parallelograms
close up to second order. As far as I know, this is the best that can be said on a “macroscopic”
level.

5.3 The Levi-Civita Connection
When we first introduced our running example about dragging tangent vectors along submani-
folds ofR𝑛 , we promised a description that didn’t depend on the embedding. We’re now finally
ready to do this.

We’ll start bydescribing that connectionusingournew language. Wecancanonically identify
𝑇R𝑛 with the trivial bundleR𝑛 ×R𝑛 , and this lets us put a trivial flat connection on it. (We’ll
write ∇̃when referring to this connection on𝑇R𝑛 , reserving ∇ for our desired connection on
𝑇𝑀 .) Specifically, for𝑤 ∈ 𝑇𝑥R𝑛 , we declare that its horizontal lift is

𝑤 ∗
(𝑥,𝑣 ) = (𝑤, 0) ∈ R𝑛 ×R𝑛 � 𝑇(𝑥,𝑣 ) (𝑇R𝑛),

so that parallel transporting (𝑥,𝑣 ) always takes it to another tangent vector with the same
coordinates. This is equivalent to saying that the covariant derivative ∇̃𝑤 coincides with the
ordinary directional derivative 𝜕𝑤 .

To get a connection on a submanifold𝑀 ⊆ R𝑛 , we had to deal with the fact that the tangent
vector (𝑤, 0) might not lie in 𝑇(𝑥,𝑣 ) (𝑇𝑀 ). We solved this by orthogonally projecting (𝑤, 0)
onto the subspace𝑇(𝑥,𝑣 ) (𝑇𝑀 ) ⊆ 𝑇(𝑥,𝑣 ) (𝑇R𝑛); this wasmeant to capture the idea that parallel
transport should change the coordinates of𝑣 as little as possible while keeping it pointing along
𝑀 . I encourage you to check that this rule for horizontal lifts is equivalent to a similar rule for
covariant derivatives: writing𝑝⊥ : 𝑇𝑥R𝑛 → 𝑇𝑥𝑀 for the orthogonal projection, we have, for any
vector field 𝑋 ,

∇𝑤𝑋 = 𝑝⊥ (∇̃𝑤𝑋 ).
This connection inherits two important properties from ∇̃. First, in addition to being linear,

the parallel transport maps induced by ∇̃ are isometries on the tangent spaces, since after all
they keep all the coordinates the same. Wewill say that a connectionwith this property respects
themetric. In fact, this is also true of ∇. Using the parallel-transport-focused definition of the
covariant derivative, I encourage you to prove that ∇ respects themetric if and only if

𝑋 ⟨𝑌 , 𝑍 ⟩ = ⟨∇𝑋𝑌 , 𝑍 ⟩ + ⟨𝑌 ,∇𝑋 𝑍 ⟩
for all vector fields 𝑋 ,𝑌 , and 𝑍 . But this holds because𝑌 and 𝑍 lie in𝑇𝑀 , and therefore, for
example, ⟨𝑝⊥ (∇̃𝑋𝑌 ), 𝑍 ⟩ = ⟨∇̃𝑋𝑌 , 𝑍 ⟩.

Second, ∇̃ is clearly torsion-free, and this is also inherited by ∇: we have
∇𝑋𝑌 − ∇𝑌 𝑋 − [𝑋 ,𝑌 ] = 𝑝⊥ (∇̃𝑋𝑌 − ∇̃𝑌 𝑋 ) − [𝑋 ,𝑌 ]

= 𝑝⊥ (∇̃𝑋𝑌 − ∇̃𝑌 𝑋 − [𝑋 ,𝑌 ]),
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since [𝑋 ,𝑌 ] lies in𝑇𝑀 already.
We can use these two properties— that ∇ respects themetric and that it’s torsion-free— to

extract a formula for it. Pick three vector fields 𝑋 ,𝑌 , and 𝑍 , and for simplicity assume that they
all commute. (The torsion-free condition then simply means that ∇𝑋𝑌 = ∇𝑌 𝑋 .) We compute:

⟨∇𝑋𝑌 , 𝑍 ⟩ = 𝑋 ⟨𝑌 , 𝑍 ⟩ − ⟨𝑌 ,∇𝑍𝑋 ⟩
= 𝑋 ⟨𝑌 , 𝑍 ⟩ − 𝑍 ⟨𝑌 , 𝑋 ⟩ + ⟨∇𝑌 𝑍 , 𝑋 ⟩
= 𝑋 ⟨𝑌 , 𝑍 ⟩ − 𝑍 ⟨𝑌 , 𝑋 ⟩ +𝑌 ⟨𝑍 , 𝑋 ⟩ − ⟨𝑍 ,∇𝑋𝑌 ⟩,

which implies that
⟨∇𝑋𝑌 , 𝑍 ⟩ = 1

2 (𝑋 ⟨𝑌 , 𝑍 ⟩ − 𝑍 ⟨𝑋 ,𝑌 ⟩ +𝑌 ⟨𝑍 , 𝑋 ⟩).
This completely determines ∇, and it is not hard to check that this formula always produces a
bona fide covariant derivative.

Crucially, this new formula depends only on themetric on𝑀 ; unlike our original definition
of ∇, it has nothing to do with the embedding inR𝑛 ! We therefore have stumbled on a proof of
an important theorem in Riemannian geometry: for any Riemannianmanifold𝑀 , there is a
unique connection on its tangent bundle which is torsion-free and respects themetric. This is
called the Levi-Civita connection.

Many authors gloss over the torsion-free condition in this theorem as just a technical detail,
but it is worth emphasizing how critical it is to the uniqueness of the Levi-Civita connection.
Suppose we were only after a connection that respects themetric, but we didn’t care about its
torsion. We could accomplish this by picking any orthonormal frame in𝑇𝑀 and using the same
rule we used to define ∇̃: we declare that when we parallel transport a vector 𝑣 to another point
of𝑀 we always get the vector with the same coordinates as 𝑣 according to our chosen frame.

This connection tells us very little about the geometry of𝑀 . In particular, because parallel
transport was defined in a path-independent way, it is always flat, nomatter what themetric
is. In general, though, it will have torsion: if 𝑋 and𝑌 are two vector fields of our orthonormal
frame then our definition implies that ∇𝑋𝑌 = ∇𝑌 𝑋 = 0, but [𝑋 ,𝑌 ] is almost never zero. In fact,
if every pair of vector fields in our orthonormal frame commute, that means that the frame
actually comes from an orthonormal coordinate system, which wouldmean that our manifold
is locally isometric toR𝑛 . Insisting that our connection be torsion-free is crucial if we want to
eliminate useless cases like this one and single out the connection that actually tells us about
the geometry of𝑀 .

Exercises
1. Given a connection on a vector bundle 𝐸 over𝑀 , we can think of it as a principal𝐺𝐿 (𝑛)-

connection on the frame bundle. Using the𝐺𝐿 (𝑛)-representations of the form
R𝑛 ⊗ · · · ⊗ R𝑛 ⊗ (R𝑛)∗ ⊗ · · · ⊗ (R𝑛)∗,

we can turn this into a connection on any tensor product of copies of 𝐸 and 𝐸 ∗.
Find the formula for the covariant derivative of such a connection in terms of the original
covariant derivative on 𝐸 .

2. There is an equivalent way to characterize torsion in terms of the exterior derivative of a
1-form. We always have, for a 1-form 𝛼 and two commuting vector fields 𝑋 and𝑌 ,

𝑑𝛼 (𝑋 ,𝑌 ) = 𝑋 (𝛼 (𝑌 )) −𝑌 (𝛼 (𝑋 )),
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and if we have a connection on the tangent bundle we can ask whether an analogous
statement is true with covariant derivatives of 𝜔 in place of ordinary derivatives. That
is, extending the covariant derivative to 1-forms as in the previous problem, we can ask
whether

𝑑𝛼 (𝑋 ,𝑌 ) = (∇𝑋 𝛼) (𝑌 ) − (∇𝑌 𝛼) (𝑋 ).
Prove that the torsion is the obstruction to this being true. If we don’t assume that 𝑋 and
𝑌 commute, then a−𝛼 ( [𝑋 ,𝑌 ]) appears in the usual definition of 𝑑 , but no corresponding
term appears in our desired second expression. Why not?

3. Write 𝐹𝑀 for the frame bundle to the tangent bundle of𝑀 . We define an R𝑛-valued
1-form 𝜃 on 𝐹𝑀 called the soldering form. Given a point𝑢 ∈ 𝐹𝑀 , we can think of𝑢 as
an isomorphism of vector spacesR𝑛 → 𝑇𝜋 (𝑢 )𝑀 . We then set 𝜃𝑢 (𝑣 ) = 𝑢−1 (𝜋∗𝑣 ). (In other
words, 𝜃𝑢 (𝑣 ) gives us the coordinates of 𝜋∗𝑣 in terms of the frame𝑢 .)

(a) Recall the definition of the exterior covariant derivative𝐷 from the exercises to the
previous section, and write Θ = 𝐷𝜃 . Prove that, under the correspondence from
that exercise between tensorial differential forms on 𝑃 and vector-bundle-valued
differential forms on𝑀 ,Θ corresponds to the torsion tensor𝑇 .

(b) Prove that𝐷Θ = Ω ∧ 𝜃 . This is called the first Bianchi identity.

4. Consider a manifold𝑀 with a connection on its tangent bundle. Given a coordinate
system 𝑥1, . . . , 𝑥𝑛 on an open subset of𝑀 , it can be convenient to express the connection
in terms of a collection of 𝑛3 functions Γ𝑘

𝑖 𝑗
called Christoffel symbols. They are defined

by the rule

∇𝜕𝑖 𝜕𝑗 =
𝑛∑︁
𝑘=1

Γ𝑘𝑖 𝑗𝜕𝑘 .

Prove that, if theChristoffel symbols corresponding toanother coordinate system 𝑦1, . . . , 𝑦𝑛
are Γ̃𝑘

𝑖 𝑗
, then we have

Γ̃𝑘𝑖 𝑗 =
∑︁
𝑟 ,𝑠 ,𝑡

𝜕𝑦𝑘

𝜕𝑥𝑡

𝜕𝑥𝑟

𝜕𝑦𝑖

𝜕𝑥𝑠

𝜕𝑦𝑗
Γ𝑡𝑟 𝑠 +

∑︁
𝑟

𝜕2𝑥𝑟
𝜕𝑦𝑖𝜕𝑦𝑗

𝜕𝑦𝑘

𝜕𝑥𝑟
.

5. Recall from an earlier exercise that the difference between two connections is a well-
defined tensor.

(a) Prove that, in our new covariant derivative language, this amounts to the fact that,
given two covariant derivative operators ∇ and ∇̃ on the tangent bundle of𝑀 , the
function (𝑋 ,𝑌 ) ↦→ ∇̃𝑋𝑌 − ∇𝑋𝑌 gives a section of (𝑇 ∗𝑀 )⊗2.

(b) Prove that this tensor is symmetric if and only if the two connections have the same
torsion.

6 Surfaces and the Gauss-Bonnet Theorem
An article like this is not the right place for a detailed study of the geometric applications of this
theory. Still, this has all been quite abstract so far, so I thought it would be good to close with a
taste of how to use the tools we’ve developed to do somethingmore concrete and geometric.
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So, in this section we will prove theGauss-Bonnet Theorem, a famous result from the geome-
try of surfaces. Going through all the work we’ve done so far is certainly not the simplest way to
prove this result, but I believe it is illuminating to see how the theory looks as we “unwind” it
down to this simpler setting.

6.1 Holonomy and Curvature on a Surface
Before we start, it will be very useful to recast themetric-respecting property of the Levi-Civita
connection in slightly fancier language. In the supplementary article on𝐺 -bundles wemen-
tioned that putting a metric on a vector bundle 𝐸 is equivalent to giving it the structure of
an𝑂 (𝑛)-bundle (in addition to its existing𝐺𝐿 (𝑛)-bundle structure): requiring the transition
functions to be orthogonal exactly means that we can ask for the inner product of two vectors
in the same fiber and get the same answer nomatter which trivialization we use.

In this language, a connection respects themetric on 𝐸 if and only if it is an𝑂 (𝑛)-bundle
connection — these are just two different ways to say that the parallel transport maps are
orthogonal. If 𝐸 is also oriented, then we have additionally given it the structure of an 𝑆𝑂 (𝑛)-
bundle. A simple continuity argument, which I encourage you towork out precisely, thenmeans
that our metric-respecting connection is then automatically also an 𝑆𝑂 (𝑛)-bundle connection.

This section is going to be all about the geometry of surfaces. We’ll let𝑀 be an compact,
oriented surface with a Riemannianmetric ⟨·, ·⟩ and its Levi-Civita connection ∇, which is now
an 𝑆𝑂 (2)-bundle connection.

Crucially, 𝑆𝑂 (2) is abelian, and this turns out to simplify many aspects of our theory, es-
pecially the relationship between holonomy and curvature. Recall that, for a loop𝛾 , hol𝑢 𝛾 is
the unique element of𝐺 such that𝑢 · hol𝑢 𝛾 = pt𝛾 (𝑢). (This𝑢 lives in the associated principal
bundle of the tangent bundle, which in our 𝑆𝑂 (𝑛) setting is the oriented orthonormal frame
bundle.) When we first introduced this definition, we pointed out that replacing𝑢 with another
point in the same fiber replaces hol𝑢 𝛾 with a conjugate in𝐺 . Since 𝑆𝑂 (2) is abelian, we don’t
have to worry about this: the holonomy of a loop is simply a rotation by some angle irrespective
of the choice of (oriented orthonormal) frame. Because of this, we’ll simply write hol𝛾 ∈ 𝑆𝑂 (2).

The fact that curvature is defined in terms of the holonomy of a small loopmeans that a simi-
lar simplification happens for curvature. That is, we always have (𝑅𝑔 )∗Ω(𝑣,𝑤 ) = Ad𝑔 −1 ·Ω(𝑣,𝑤 )
for 𝑣,𝑤 ∈ 𝑇𝑢𝑃 , and so in our setting applyingΩ to the horizontal lift of two vectors gives the
same element of 𝔰𝔬(2) regardless of which frame𝑢 we lifted them to.

So, for tangent vectors 𝑣,𝑤 ∈ 𝑇𝑥𝑀 , the quantityΩ(𝑣∗𝑢 ,𝑤 ∗
𝑢 ) ∈ 𝔰𝔬(2) doesn’t actually depend

on 𝑢 . Furthermore, 𝔰𝔬(2) is canonically isomorphic to R, and so Ω gives rise to an ordinary,
real-valued 2-form on𝑀 . It is customary to write it in terms of a function 𝐾 : 𝑀 → R, setting

𝐾 𝑑𝐴 (𝑣,𝑤 ) = −Ω(𝑣∗𝑢 ,𝑤 ∗
𝑢 ),

where 𝑑𝐴 is the area form on𝑀 arising from our chosenmetric and orientation. (This notation
is not meant to suggest that 𝑑𝐴 is the exterior of derivative of something called 𝐴!) The function
𝐾 is called theGaussian curvature.

Putting this all together, we can write a simpler relationship between holonomy and cur-
vature. If𝐷 is a region in𝑀 homeomorphic to a disc, let𝛾 be the path around its boundary
oriented counterclockwise (that is, so that as wemove forward the interior of𝐷 is on our left).
The exponential map 𝔰𝔬(2) → 𝑆𝑂 (2) takes an angle 𝜃 to the rotation-by-𝜃 map, and we will
follow the common convention of writing it as 𝜃 ↦→ exp(𝑖 𝜃 ). If we do this, we have

hol𝛾 = exp 𝑖
∬

𝐷

𝐾 𝑑𝐴.

http://nicf.net/articles/connections-gbundles
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The rest of this section is all about the consequences of this formula.

6.2 Curvature and Angles
Suppose we’re given a loop𝛾 as in the statement above, and suppose for themoment that𝛾 is
smooth even at the endpoints, so𝛾 ′ (0) = 𝛾 ′ (1). After reparametrizing𝛾 , we can also assume
that its velocities all have unit length, i.e., ⟨𝛾 ′ (𝑡 ),𝛾 ′ (𝑡 )⟩ = 1 everywhere.

At every 𝑡 , consider the two vectors 𝛾 ′ (𝑡 ) and pt𝑡𝛾 (𝛾 ′ (0)). We can keep track of how the
angle between them changes as wemove around the loop—how the tangent vector to𝛾 “turns”
according to our connection as we move around the loop. Write 𝜃 : [0, 1] → 𝔰𝔬(2) for the
unique smooth function such that 𝜃 (0) = 0 and

𝛾 ′ (𝑡 ) = (exp 𝑖 𝜃 (𝑡 )) · pt𝑡𝛾 (𝛾 ′ (0)).

γ′(0)

γ′(t )
pttγ(γ′(0))θ(t )

The second condition determines 𝜃 (𝑡 ) up to amultiple of 2𝜋 , and the smoothness and the
initial condition determine it completely. (It is a nice exercise to show that we could equivalently
specify 𝜃 in terms of the differential equation ∇𝛾 ′ (𝑡 )𝛾 ′ (𝑡 ) = 𝜃 ′ (𝑡 ) · 𝛾 ′ (𝑡 ).) Let’s call𝜏 = 𝜃 (1) the
total turn of𝛾 ; this is the total amount of angle that the tangent vector has turned through as we
go around the loop once. Since𝛾 ′ (1) = 𝛾 ′ (0), we can conclude from this that exp(−𝑖𝜏) = hol𝛾 .

Now, we of course also know that exp 𝑖
∬
𝐷
𝐾 𝑑𝐴 = hol𝛾 , whichmeans that𝜏 +

∬
𝐷
𝐾 𝑑𝐴 is

an integer multiple of 2𝜋 . There are a few ways to see that this sum is in fact exactly 2𝜋 ; Spivak’s
book suggests the following one. Put coordinates on𝐷 , identifying it with a compact subset of
R2. We can consider a family of deformed versions of our metric, writing

𝑔𝑢 (𝑣,𝑤 ) = 𝑢 ⟨𝑣,𝑤⟩ + (1 − 𝑢)⟨𝑣,𝑤⟩flat,

where ⟨·, ·⟩flat is the ordinary flat metric on R2. It is not hard to show that, if we compute
𝜏 +

∬
𝐷
𝐾 𝑑𝐴 with 𝑔𝑢 in place of our original metric, the result depends continuously on𝑢 . Since

it’s also always a multiple of 2𝜋 , it must be constant. When𝑢 = 0 and we have the flat metric, so
the curvature is 0, and we are reduced to showing that𝜏 = 2𝜋 for a simple closed curve in the
plane, which I encourage you to do. In the end, we have that∬

𝐷

𝐾 𝑑𝐴 = 2𝜋 − 𝜏.

We will actually need a slight generalization of this statement: we want an analogue of 𝜏
when𝛾 is just piecewise smooth. So suppose𝛾 is composed of 𝑛 smooth segments𝛾1, . . . ,𝛾𝑛 ,
where𝛾𝑖 : [𝑡𝑖−1, 𝑡𝑖 ] → 𝑀 for some partition 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 1 of the interval. For each of
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these segments, we can ask howmuch the tangent vector turns as wemove along it, producing
𝜃𝑖 : [𝑡𝑖−1, 𝑡𝑖 ] → 𝔰𝔬(2) exactly like 𝜃 above to tell us howmuch the parallel transport of𝛾 ′

𝑖
(𝑡𝑖−1)

must be rotated tomatch𝛾 ′
𝑖
(𝑡 ).

From each segment of the path we get a contribution𝜏𝑖 = 𝜃𝑖 (𝑡𝑖 ) to our total turn𝜏 , but we
also need to add a term for each of the corners 𝑡𝑖 , where the tangent vector makes a large turn
all at once. One can extract the right way to handle this by replacing each corner with a close
smooth approximation and comparing the angle at the corner to what its smooth versionwould
have contributed to𝜏 . We will not go through the details of this argument, but the result is that
we should pick a turning angle 𝛿𝑖 ∈ [−𝜋,𝜋] so that

𝛾 ′
𝑖+1 (𝑡𝑖 ) = exp(𝑖𝛿𝑖 ) · 𝛾 ′

𝑖 (𝑡𝑖 ).

δ = − π3

δ = π

δ = π2δ = −π

(The way to choose between −𝜋 and 𝜋 is illustrated in the diagram.) If these choices are
made in the right way, then our total turn is the sum of the𝜏𝑖 ’s and the 𝛿𝑖 ’s, and we have∬

𝐷

𝐾 𝑑𝐴 = 2𝜋 −
𝑛∑︁
𝑖=1

𝜏𝑖 −
𝑛∑︁
𝑖=1

𝛿𝑖 .

This fact can be used to gain a more immediate visual understanding of why the word
“curvature” is used to refer to this concept. It is strongest in the case where all themaps 𝜃𝑖 are
constant. This means that the tangent vectors to𝛾𝑖 are not turning at all as wemove forward,
that is, ∇𝛾 ′

𝑖
(𝑡 )𝛾 ′

𝑖
(𝑡 ) = 0 everywhere. Such a curve is called a geodesic; and when each 𝛾𝑖 is a

geodesic we call𝛾 a geodesic polygon. For a geodesic polygon the𝜏𝑖 ’s vanish, so the equation
above reduces to

∬
𝐷
𝐾 𝑑𝐴 = 2𝜋 −∑

𝛿𝑖 .
In R2 with its ordinary flat metric, geodesics are straight line segments and the sum of

the turning angles of a geodesic polygon is 2𝜋 . Our equation suggests that we might think
about curvature by comparing the shape of our geodesic polygon to one in the flat plane. If our
geodesic polygon encloses positive curvature, its edges are pushed outward, causing its turning
angles to be smaller (and therefore its interior angles to be larger) than we would expect on the
flat plane; negative curvature similarly pulls the edges inward.
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6.3 Gauss-Bonnet
The Gauss-Bonnet theorem says that, if𝑀 is a compact oriented Riemannian surface with
Gaussian curvature 𝐾 , then ∬

𝑀

𝐾 𝑑𝐴 = 2𝜋 · 𝜒(𝑀 ),

where 𝜒 denotes the Euler characteristic. We’ve now done essentially all the geometry we need;
all that remains is a bit of bookkeeping.

Start with a smooth triangulation of𝑀 , and suppose it has𝑉 vertices, 𝐸 edges, and 𝐹 faces.
We can split the integral of the curvature into a contribution fromeach triangle, and the equation
we just derived then tells us that∬

𝑀

𝐾 𝑑𝐴 =
∑︁

faces 𝑓

©«2𝜋 −
∑︁

edges 𝑒 ∈ 𝑓
𝜏 (𝑒 , 𝑓 ) −

∑︁
vertices 𝑣∈ 𝑓

𝛿 (𝑣, 𝑓 )ª®¬ ,
where𝜏 (𝑒 , 𝑓 ) is the total turn of the edge 𝑒 with the orientation it inherits from 𝑓 , and 𝛿 (𝑣, 𝑓 ) is
the turning angle of the triangle 𝑓 at the vertex 𝑣 .

The first thing to notice is that each edge appears exactly twice in this sum, each time with
the opposite orientation. This means that the𝜏 (𝑒 , 𝑓 ) terms all cancel with each other: the total
turn of an edge is negated when the direction of that edge is reversed.

For the 𝛿 (𝑣, 𝑓 )’s we will be helped by a small shift in notation: we will write 𝜄(𝑣, 𝑓 ) = 𝜋 −
𝛿 (𝑣, 𝑓 ) and call this the interior angleof the triangle 𝑓 at𝑣 . Since each triangle has three vertices,
our sum equals

∑︁
faces 𝑓

©«2𝜋 − 3𝜋 +
∑︁

vertices 𝑣∈ 𝑓
𝜄(𝑣 )ª®¬ = −𝜋𝐹 +

∑︁
vertices 𝑣

∑︁
faces 𝑓 ∋𝑣

𝜄(𝑣, 𝑓 ).

Each vertex will appear in several triangles, and the total of the interior angles at each
vertex will add up to 2𝜋 . This means that we can write our sum simply as −𝜋𝐹 + 2𝜋𝑉 . But,
since every face is a triangle, we know that 3𝐹 = 2𝐸 , and so our original integral is in fact
2𝜋 (𝑉 − 𝐸 + 𝐹 ) = 2𝜋 · 𝜒(𝑀 ) as desired.

This result puts some interesting constraints on the possible metrics that can be put on a
surface that depend only on its topology. For example, we can conclude that we can only put a
metric with 𝐾 > 0 everywhere on a sphere, 𝐾 = 0 everywhere on a torus, and 𝐾 < 0 everywhere
on a surface of genus at least 2. (In fact all of these are possible to achieve.) Moreover, since
we never actually used any intrinsic definition of the Euler characteristic in the proof, we can
conclude (though certainly not in themost elementary way!) that 𝜒(𝑀 ) doesn’t depend on the
triangulation we used.

There is a nice generalization of this result to larger even-dimensional manifolds, but we
won’t cover it in this article. There is alsomuchmore to say even about the geometry of surfaces,
and I encourage the interested reader to learnmore.
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