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Connections Crash Course:
Holonomy and Curvature

Nic Ford

1 Introduction
This article is a supplement to a longer piece I am writing about the theory of connections
and it probably won’t makemuch sense outside the context of that larger article. It concerns
a question that arose in that article’s presentation of the relationship between the holonomy
and the curvature of a connection: how do we realize the holonomy of a loop as an integral of
the curvature over the interior of the loop? When I was researching the connections article I
couldn’t find a nice, isolated presentation of the answer to this question except in the abelian
case, so I wanted to take the time to present an argument for it here.

2 The Argument
We start with a principal𝐺 -bundle 𝜋 : 𝑃 → 𝑀 and a principal connection on 𝑃 . Consider a
parametrized square𝑄 : [0, 1] × [0, 1] → 𝑀 whose coordinates we’ll call 𝑠 and 𝑡 . We’ll write
𝛾 from the loop based at𝑄 (0, 0) (the lower-left corner) going counterclockwise around the
boundary of the square; this is the loop whose holonomy we will be interested in. Fix a point𝑝
in the fiber of 𝑃 over𝑄 (0, 0).

Our goal is to relate the holonomy of𝛾 to some sort of integral over the interior of𝑄 . We will
proceed in two steps, first splitting𝛾 into thin horizontal strips, then splitting each strip into
small squares. We’ll start by introducing some notation for the paths we’ll split𝛾 into:

• 𝛾𝑠 ,𝑡 is the counterclockwise rectangular loop with𝑄 (𝑠 , 𝑡 ) as its upper-right corner (so
𝛾 = 𝛾1,1)

• 𝑣𝑡 is the vertical path starting at𝑄 (0, 0) andmoving up to𝑄 (0, 𝑡 )
• ℎ𝑠 ,𝑡 is the horizontal path starting at𝑄 (0, 𝑡 ) andmoving right to𝑄 (𝑠 , 𝑡 )
• 𝜎Δ𝑡

𝑠 ,𝑡 is a “strip” of height Δ𝑡 , a loop starting at𝑄 (0, 𝑡 ), moving right toward𝑄 (𝑠 , 𝑡 ), up to
𝑄 (𝑠 , 𝑡 + Δ𝑡 ), left to (0, 𝑡 + Δ𝑡 ), and back down to𝑄 (0, 𝑡 )

• 𝜏Δ𝑠 ,Δ𝑡𝑠 ,𝑡 is a “tiny” counterclockwise loop starting at𝑄 (𝑠 , 𝑡 ), moving right to𝑄 (𝑠 + Δ𝑠 , 𝑡 ), up
to𝑄 (𝑠 + Δ𝑠 , 𝑡 + Δ𝑡 ), left to𝑄 (𝑠 , 𝑡 + Δ𝑡 ), and back down to𝑄 (𝑠 , 𝑡 )

Wewill also need to refer to the parallel transport of𝑝 along some of these paths; we’ll write
𝑝0,𝑡 = pt𝑣𝑡 (𝑝) and𝑝𝑠 ,𝑡 = ptℎ𝑠 ,𝑡

(𝑝0,𝑡 ).

http://nicf.net/articles/connections-crash-course
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Nowwe compute. By examining this diagram, we can extract the following relations:

hol𝑝 (𝛾𝑠 ,𝑡+Δ𝑡 ) = hol𝑝 (𝛾𝑠 ,𝑡 ) hol𝑝 (𝑣𝑡 · 𝜎Δ𝑡
𝑠 ,𝑡 · 𝑣−1

𝑡 )
hol𝑝0,𝑡 (𝜎Δ𝑡

𝑠+Δ𝑠 ,𝑡 ) = hol𝑝0,𝑡 (ℎ𝑠 ,𝑡 · 𝜏Δ𝑠 ,Δ𝑡𝑠 ,𝑡 · ℎ−1
𝑠 ,𝑡 ) hol𝑝0,𝑡 (𝜎Δ𝑡

𝑠 ,𝑡 ).

From this, we can extract some differential equations in𝐺 relating these holonomies to each
other, which will lead us to our final expression. From the first equation, using the relationship
between lassos and loops derived in themain article, we get

𝜕

𝜕(Δ𝑡 ) hol𝑝 (𝛾𝑠 ,𝑡+Δ𝑡 ) = hol𝑝 (𝛾𝑠 ,𝑡 ) ·
(

𝜕

𝜕(Δ𝑡 ) hol𝑝0,𝑡 (𝜎
Δ𝑡
𝑠 ,𝑡 )

)
.

(Here we are again using the convention of writing, for 𝑔 ∈ 𝐺 and 𝑋 ∈ 𝔤, 𝑔 · 𝑋 = (𝐿𝑔 )∗ (𝑋 ).) In
other words, we can write hol𝑝 (𝛾1,1) as a path-ordered exponential, provided we can find a nice
way to express the part in parentheses.

From the second equation, we see that

𝜕

𝜕(Δ𝑠 )
𝜕

𝜕(Δ𝑡 ) hol𝑝0,𝑡 (𝜎
Δ𝑡
𝑠+Δ𝑠 ,𝑡 ) =

𝜕

𝜕(Δ𝑠 )
𝜕

𝜕(Δ𝑡 )
(
hol𝑝𝑠 ,𝑡 (𝜏Δ𝑠 ,Δ𝑡𝑠 ,𝑡 ) hol𝑝0,𝑡 (𝜎Δ𝑡

𝑠 ,𝑡 )
)
.

(Note that these second derivatives are well-defined, since the first derivative can canonically
be placed in the vector space 𝔤.) Since both of the holonomies beingmultiplied are the identity
when Δ𝑡 = 0, we can use the Leibniz rule to turn the expression on the right into

𝜕

𝜕(Δ𝑠 )

(
𝜕

𝜕(Δ𝑡 ) hol𝑝𝑠 ,𝑡 (𝜏
Δ𝑠 ,Δ𝑡
𝑠 ,𝑡 ) + 𝜕

𝜕(Δ𝑡 ) hol𝑝0,𝑡 (𝜎
Δ𝑡
𝑠 ,𝑡 )

)
.

The second term vanishes when we take a derivative with respect to Δ𝑠 , and so

𝜕

𝜕(Δ𝑡 ) hol𝑝0,𝑡 (𝜎
Δ𝑡
1,𝑡 ) =

∫ 1

0

(
𝜕2

𝜕(Δ𝑠 )𝜕(Δ𝑡 ) hol𝑝𝑠 ,𝑡 (𝜏
Δ𝑠 ,Δ𝑡
𝑠 ,𝑡 )

)
𝑑𝑠 .

Therefore, plugging this into the first differential equation, we get

hol𝑝 (𝛾 ) = Pexp
∫ 1

0

∫ 1

0

(
𝜕2

𝜕(Δ𝑠 )𝜕(Δ𝑡 ) hol𝑝𝑠 ,𝑡 (𝜏
Δ𝑠 ,Δ𝑡
𝑠 ,𝑡 )

)
𝑑𝑠 𝑑𝑡 .

Wehave now accomplishedmost of our original goal: wewrote the holonomy of our original
loop as an integral of holonomies involving tiny loops spread throughout its interior. How-
ever, the analogy with Stokes’ Theorem can be made stronger by finding a nice coordinate-
independent expression for the integrand. This is exactly where the curvature will come in.
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We can strip away some of the notation now that we aren’t worried about the whole integral.
Take a point𝑝 ∈ 𝑃 lying over 𝑥 ∈ 𝑀 , and consider a parametrized square𝑄 : [0, 1] × [0, 1] → 𝑀

as before with𝑄 (0, 0) = 𝑥 . Write𝜏𝑠 ,𝑡 for counterclockwise rectangular loop based at 𝑥 of width
𝑠 and height 𝑡 ; we are interested in (𝜕2/𝜕𝑠 𝜕𝑡 ) hol𝑝 (𝜏𝑠 ,𝑡 ) ∈ 𝔤.

Recall that one of our definitions of a principal connection was in terms of the connection
form 𝜔, which takes a tangent vector to the element of 𝔤 corresponding to its vertical part. It
will be convenient for us to express the element of 𝔤 we’re interested in in terms of parallel
transport in 𝑃 rather than paths in𝐺 , and 𝜔 is exactly the tool we need for this: I encourage you
to convince yourself that

𝜕2

𝜕𝑠 𝜕𝑡
hol𝑝 (𝜏𝑠 ,𝑡 ) = 𝜔

(
𝜕2

𝜕𝑠 𝜕𝑡
(pt𝜏𝑠 ,𝑡 𝑝)

)
.

The parallel transport around𝜏𝑠 ,𝑡 can be expressed in terms of flows along horizontal vector
fields in 𝑃 . Specifically, writing 𝜕𝑠 and 𝜕𝑡 for the vector fields on the image of𝑄 pointing in the 𝑠
and 𝑡 directions, we have

𝜕2

𝜕𝑠 𝜕𝑡
(pt𝜏𝑠 ,𝑡 𝑝) =

𝜕2

𝜕𝑠 𝜕𝑡
(Fl−𝑡𝜕∗𝑡 Fl

−𝑠
𝜕∗𝑠
Fl𝑡𝜕∗𝑡 Fl

𝑠
𝜕∗𝑠
𝑝),

where Fl𝑟𝑋 is the flow along the vector field 𝑋 for time 𝑟 and 𝜕∗𝑠 denotes the horizontal lift of the
vector field 𝜕𝑠 . The expression on the right is one of themany equivalent ways to define the Lie
bracket of 𝜕∗𝑠 and 𝜕∗𝑡 at𝑝 , so the element of 𝔤 wewant in our integrand is 𝜔 ( [𝜕∗𝑠 , 𝜕∗𝑡 ])𝑝 .

This is almost good enough, but it still seems to depend on the entire vector fields 𝜕𝑠 and 𝜕𝑡
— that is, the entire coordinate systemwe put on our square— rather than just the two tangent
vectors at 𝑥 . But we can remove this last problemwith a small trick, noting that

𝑑𝜔 (𝜕∗𝑠 , 𝜕∗𝑡 ) = 𝜕∗𝑠𝜔 (𝜕∗𝑡 ) − 𝜕∗𝑡 𝜔 (𝜕∗𝑠 ) − 𝜔 ( [𝜕∗𝑠 , 𝜕∗𝑡 ]).
The first two terms on the right are zero, because each 𝜕∗

𝑖
is horizontal and therefore has no

vertical part. Soour vectorof interest is just−𝑑𝜔 (𝜕∗𝑠 , 𝜕∗𝑡 )𝑝 , andsince this is just a2-formevaluated
at two tangent vectors at𝑝 , it is (finally!) self-evidently independent of our chosen coordinate
system.

If we hadn’t yet come up with the definition of curvature, this would lead us directly to what
the definition ought to be: the curvature form of our connection is the 𝔤-valued 2-formΩ on 𝑃
given by

Ω(𝑋 ,𝑌 ) = 𝑑𝜔 (𝑋 𝐻 ,𝑌 𝐻 ),
where again 𝑋 𝐻 is the horizontal part of the vector field 𝑋 . Note that knowing the curvature
tells us everything about the holonomy around any contractible loop: we can write our integral
from before as

hol𝑝 (𝛾 ) = Pexp
∫ 1

0

∫ 1

0
−Ω(𝜕∗𝑠 , 𝜕∗𝑡 )𝑝𝑠 ,𝑡𝑑𝑠 𝑑𝑡 .

We can now see the analogy with Stokes’ Theoremmore completely: we have related the
holonomy of the outer loop—which under a choice of trivialization could be written as a one-
dimensional path-ordered integral — to a two-dimensional path-ordered integral of an exterior
derivative. This result is therefore sometimes called the nonabelian Stokes Theorem, along with
some generalizations of it. It is in fact possible to build a theory of nonabelian integration on
Lie groups that this fits into, but we won’t tackle this here. If you’re interested in learningmore,
one possible starting point is with the papers “Parallel Transport and Functors” and “Smooth
Functors vs. Differential Forms” by Urs Schreiber and KonradWaldorf which I found helpful
when preparing this supplement.
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