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Generating Functions I - How to
Count with Power Series

Nic Ford

1 Introduction
In this article, which will be the first in a short series, we’re going to explore something called
generating functions, a method for solving counting problems bymanipulating polynomials
and power series. One of the amazing things about this technique is that it involves a lot of
ideas from calculus, like derivatives and Taylor series, that were invented to study continuous
processes and would seem to have no business showing up in a context like counting, where
everything is discrete and all the answers to your questions are integers.

Because of this, while I’m not assuming any prior exposure to generating functions, you will
need some familiarity with calculus, especially derivatives and Taylor series, to follow along. (It
might also be helpful if you’ve seen Pascal’s triangle in some context before, but we’ll quickly
recapmost of what we’ll need to know about it when it comes up.) We’ll start by introducing the
technique with a simple counting problem, and then go through three more examples that can
be solved in a similar way.

Generating functions are applicable to many more problems than these, and in future
articles in this series I hope to explore a couple that get more intricate. For now, though, we
need to learn what it is we’re doing before making things too complicated. Let’s get started!

2 Our First Generating Function

2.1 Binomial Coefficients and Pascal’s Triangle
We’ll start our investigation of counting problems with a somewhat famous counting problem.
Suppose you’re given a set of < objects, and, for some 9 ≤ <, you want to pick 9 of the objects
and set them aside. (You can’t pick any of the objectsmore than once, and order doesn’t matter.)
Howmanyways are there to do this? For specific values of< and 9 , you can answer this question
just by listing all the possibilities and counting. For example, if < = 4 and 9 = 2, there are 6:
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The notationmathematicians use for this number is
(<
9

)
, pronounced “< choose 9 .” (You

might have also seen the notation <�9 .) So the figure above shows that
(4
2
)
= 6. I encourage you

to verify that the other
(4
9

)
’s are:(

4
0

)
= 1;

(
4
1

)
= 4;

(
4
2

)
= 6;

(
4
3

)
= 4;

(
4
4

)
= 1.

These
(<
9

)
numbers are called binomial coefficients. Youmight have recognized this list of

numbers— that is, 1, 4, 6, 4, 1— as the fourth row of Pascal’s triangle, and it is always true that
the

(<
9

)
’s form the <’th row of Pascal’s triangle if you use the convention that the top row is row 0.

(In fact, I like to take this as the definition of Pascal’s triangle, but you don’t have to if you have
another definition you prefer.)

There are an enormous number of interesting patterns in Pascal’s triangle. One of themost
famous is that each number in it is the sumof two numbers right above it, which in our notation
amounts to the claim that

(<
9

)
=

(<−1
9−1

)
+

(<−1
9

)
. There’s a nice way to see this purely in terms of

our choosing-9 -things-from-<-things interpretation. Suppose I know the values of all the
(5
9

)
’s

and I’m interested in computing
(6
4
)
. Pick one of the 6 objects in your set and call it the “special”

object.

Once you’ve done this, the ways of picking 4 objects can be divided into two classes: the
ones that include the special object, and the ones that don’t. If your group does include the
special object, then you need to pick 3 of the remaining 5 non-special objects to get up to 4, and
there are

(5
3
)
= 10 ways to do this.

If your group doesn’t include the special object, then you’ve chosen 4 of the remaining 5
non-special objects, and there are

(5
4
)
= 5 ways to do this.

Putting this together, we therefore get that
(6
4
)
=

(5
3
)
+

(5
4
)
= 10 + 5 = 15, finishing the proof

that
(<
9

)
=

(<−1
9−1

)
+

(<−1
9

)
when < = 6 and 9 = 4. I encourage you to convince yourself that the

samemethod will work for any choice of < and 9 .

https://en.wikipedia.org/wiki/Pascal%27s_triangle
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2.2 Another Pattern in Pascal’s Triangle
The main topic of this section will be a generalization of this fact and the method we used
to prove it. So if it isn’t yet clearwhy the process we just went through can be turned into an
argument that

(<
9

)
=

(<−1
9−1

)
+

(<−1
9

)
for any < and 9 , I encourage you to take amoment to think

through it somemore, possibly working it out for another choice of < and 9 , or finding another
explanation somewhere. (There’s a nice one on theWikipedia page for “Pascal’s rule”.)

We were able to compute
(6
4
)
by splitting our set of 6 objects into a set of 1 and a set of 5.

What if we had instead split them up some other way, say into 2 and 4? Our experience with
the last example suggests that this should probably result in a different relationship between
binomial coefficients, some way to write

(6
4
)
in terms of

(2
9

)
’s and

(4
9

)
’s. Let’s see what happens

when we apply the logic that worked before to this new case.
To emphasize the parallels between our newmethod and our old one, let’s call the objects in

our set of 2 “special” andmark them the same way as before:

Now, instead of dividing our ways of picking 4 objects into two classes like we did before, the
natural thing to do is to divide them into three classes: the ones that uses 0 special objects, the
ones that use 1 special object, and the ones that use 2 special objects:

Howmany entries are there in each class? The first and last ones are the simplest. If I don’t
pick any special objects, then I need to pick 4 non-special objects, and there’s just

(4
4
)
= 1 way to

do this. If I pick 2 special objects, I need 2 non-special objects, so there are
(4
2
)
= 6 ways to do

this.
This might lead you to think that the middle class has

(4
3
)
= 4 members, but a look at the

picture above (and the fact that we already know the final answer is supposed to be 15 rather
than 1 + 6 + 4 = 11) will tell you that this isn’t enough. What this misses is that there are also(2
1
)
= 2 ways to pick the 1 special object to go along with the 3 non-specials. So in fact, the

middle class has
(2
1
) (4
3
)
= 2 · 4 = 8members.

Pulling this all together gives us our desired formula:(
6
4

)
=

(
2
0

) (
4
4

)
+

(
2
1

) (
4
3

)
+

(
2
2

) (
4
2

)
= 1 · 1 + 2 · 4 + 1 · 6 = 15.

https://en.wikipedia.org/wiki/Pascal%27s_rule
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The final answer (which after all we already knew) is much less interesting than the pattern:
notice that every term is a product of two binomial coefficients, one with a 2 on top and one
with a 4, and that the bottom numbers always add up to 4, reflecting the fact that each term
corresponds to a different way of allocating our 4 objects between the special and non-special
subsets.

(There are two similar terms we could have written down reflecting the other two ways of
writing4as a sumof twononnegative integers, namely

(2
3
) (4
1
)
and

(2
4
) (4
0
)
. Thesewould correspond

to picking 3 or 4 special objects, which of course you can’t do because there are only 2 of them.
For this reason, the usual mathematical convention is that

(<
9

)
= 0 whenever 9 > <, and with

that convention in place you’re free to either include these extra terms or not, since they’ll both
just be zero.)

Following this recipe for a general < and 9 gives us a new formula relating the binomial
coefficients on row < of Pascal’s triangle to the ones on rows> and ? whenever> + ? = <: we
have (

<

9

)
=

(
>

0

) (
?

9

)
+

(
>

1

) (
?

9 − 1

)
+ · · · +

(
>

9

) (
?

0

)
.

The sumwill have 9 + 1 terms in it, one for each way of writing 9 as a sum of two nonnegative
integers. Some of these terms might have binomial coefficients with their bottom number
bigger than their top number, in which case the termwill be zero and you’re free to drop it if
you want. I encourage you to check that if you take> = 1 and ? = < − 1 and drop all the terms
that end up equalling zero, you recover the

(<
9

)
=

(<−1
9−1

)
+

(<−1
9

)
rule from our earlier discussion!

2.3 Convolution andMultiplying Polynomials
This operation, wherewe express the entries on the<’th rowof Pascal’s triangle in terms of a sum
of products of entries from the> ’th and? ’th rows, is important enough to have a name. Suppose
I’ve got two lists of numbers, call them (00, 01, . . . , 0;) and (10, 11, . . . , 1<). The convolution of
these two lists is the list (20, 21, . . . , 2;+<) whose 9 ’th entry is given by

29 = 0019 + 0119−1 + · · · + 0910,

where any terms that go off the end of our original lists are taken to be 0. (The act of computing a
convolution is called “convolving,” like how performingmultiplication is called “multiplying.”)

For example, the convolution of the list (3, 2, 1) with the list (4, 5) is (12, 23, 14, 5). Here’s
how towork out the 14 in some detail, and I encourage you to do something similar for the other
three entries to make sure the operation is clear:

(The ∗ on the top line is a common symbol for convolution. The easiest thing to forget
when doing these computations is that our lists start with the 0’th entry! This convention is
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necessary to line things up with the story we just told about binomial coefficients, and for the
other applicationswe’re about to explore.) Using this new terminology, we can express the result
of our whole preceding conversation in a single sentence: if > + ? = <, then the <’th row of
Pascal’s triangle is the convolution of the> ’th and ? ’th rows.

There is a very nice way to think about convolution in terms of multiplying polynomials,
which is probably easiest to understand through an example. For each of our two lists from
earlier, write down the polynomial whose F9 coefficient is the 9 ’th entry on the list, like this:

3 + 2F + 1F2 4 + 5F.

Now, notice that when youmultiply these two polynomials, the coefficients of the result are the
same as the convolution we computed before:

(3 + 2F + 1F2) · (4 + 5F) = 12 + 23F + 14F2 + 5F3.

This is not a coincidence! In order to find the F9 coefficient of the product, we need to look
at all pairs of terms from the two polynomials we’re multiplying where the exponents on F add
up to 9 ; I encourage you to convince yourself that the resulting computation is exactly the same
as the one we described earlier for finding the 9 ’th entry in the convolution of the two original
lists.

This observation — that when you multiply two polynomials, the resulting sequence of
coefficients is the convolution of the original two sequences of coefficients— leads us, finally, to
ourmain definition. Given a list of numbers (00, 01, . . . , 0<), the polynomial 00+01F + · · ·+0<F<
is called the generating function of the original list.

As we’ve seen in our example with the rows of Pascal’s triangle, convolution can be an impor-
tant tool for thinking about counting problems, and the concept of generating functions gives
us a nice way to do the “bookkeeping” associated with convolution in terms of an operation
that’s more familiar. (Among other things, identifying convolution with polynomial multiplica-
tion immediately tells us that convolution is commutative and associative and distributes over
addition.) Let’s see how this looks in our example.

Let’s write 5< (F) for the generating function of the <’th row of Pascal’s triangle. For the rows
we considered in our example above, the associated 5< ’s are

52 (F) = 1 + 2F + F2

54 (F) = 1 + 4F + 6F2 + 4F3 + F4

56 (F) = 1 + 6F + 15F2 + 20F3 + 15F4 + 6F5 + F6.

The rule we found relating the rows of the triangle to each other can be summarized very
succinctly in terms of the 5< ’s: we showed that 5>+? (F) = 5> (F) 5? (F). (If you’d like, you can check
that 56 (F) = 52 (F) 54 (F) directly, and observe that the computations you perform to find each
coefficient are exactly the same as the ones we did before.)

Something kind of satisfying happens if you apply this rule to some 5< to split it up as much
as possible. We can use it to write 5< (F) = 5<−1 (F) 51 (F), and then apply it again to the 5<−1 to
get 5< (F) = 5<−2 (F) 51 (F)2, and so on until we get 5< (F) = 51 (F)< . Since (as I encourage you to
check) we can directly compute 51 (F) = 1 + F , we arrive at the following fact:

(1 + F)< = 5< (F) =
(
<

0

)
+

(
<

1

)
F +

(
<

2

)
F2 + · · · +

(
<

<

)
F< .
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This is called the binomial theorem, and youmight or might not have run across it before.
(A “binomial” is a polynomial with two terms, like the 1 + F that appears in this statement. This
is also the source of the name “binomial coefficient” for

(<
9

)
.) It’s often taught in high school

math classes in a slightly different form involving (F + G )< ; if you’ve seen that version before it’s
a nice exercise to try to prove it from the one we just proved here.

From here we can even directly extract a formula for
(<
9

)
. In general, you can get the F9

coefficient of any polynomial > (F) = 00 + 01F + 02F2 + · · · + 0<F< by taking the derivative 9
times and then plugging in zero: if you do this, you get> (9 ) (0) = 9 !09 . In our present case, we
want to take the 9 ’th derivative of (1 + F)< , which you can do using the regular chain rule and
power rule from calculus. I encourage you to check that

5
(9 )
< (F) = < · (< − 1) · (< − 2) · · · (< − 9 + 1) (1 + F)<−9 =

<!
(< − 9 )! (1 + F)

<−9 ,

and so, putting all this together, we learn that(
<

9

)
=

<!
9 !(< − 9 )! .

It’s possible to prove the binomial theorem directly, without having to know anything about
convolution and generating functions. (I won’t spoil all the details here in case you’d like to
think about it, but the key step is to imagine expanding out the product of < copies of 1 + F and
figuring out why the number of copies of F9 you get is equal to the number of ways of choosing
9 objects from a set of <.) But now that we’ve seen the concept of generating functions, we can
apply it to a variety of other problems where things won’t be so simple. We’ll go through a few
now.

3 Generating Functions as Power Series

3.1 Multiset Binomial Coefficients
Our first example will be a slight variation of the one we just did. Consider a set of < objects just
like before, but this time we’ll pick 9 of themwith repeats allowed. Order still doesn’t matter, so
for example if < = 4 and 9 = 2 there are 10 possibilities: 11, 12, 13, 14, 22, 23, 24, 33, 34, and 44.

Thenumber ofways to do this has the slightly unwieldynamemultiset binomial coefficient.
It’s written

(( <
9

))
, pronounced “< multichoose 9 .” Our goal is to use generating functions to find

a formula for these numbers like the one we just found for the
(<
9

)
’s.

Right away there’s a big difference between this example and the previous one: now that
we’re allowing repeats,

(( <
9

))
can be nonzero even if 9 > <. (As a quick example, check that((

2
6

))
= 7.) This means that if we pick an < and want to form a generating function;< for the

sequence (
(( <
0
))
,
(( <
1
))
, . . .) like we did for the ordinary binomial coefficients, it will need to have

infinitely many terms! For example, when < = 4 the first few terms would look like

;4 (F) = 1 + 4F + 10F2 + 20F3 + 35F4 + 56F5 + · · · ,

with terms continuing on forever.
Is this a problem? Strictly speaking, thismeans that the generating function for this sequence

isn’t a polynomial, since by definition polynomials have finitely many terms. Instead it’s what’s
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called a power series, that is, an expression of the form 00 + 01F + 02F2 + · · · , where all the 09 ’s
are potentially nonzero. There are good reasons to be nervous aboutmanipulating these objects
as if they were polynomials! We’ll circle back to these questions later, but it will be easier to think
about them once we’ve seen how themethod works, so for now let’s press on and see what we
can learn about the

(( <
9

))
’s by taking this perspective.

The first big observation is that, if we split up our set of < into a set of> and a set of ? like we
did before, then the convolution relationshipwe found between the

(<
9

)
’s also holds for the

(( <
9

))
’s,

and for exactly the same reason: you can divide up all the ways of picking 9 objects according
to howmany are chosen from the first subset and howmany are chosen from the second. The
fact that repeats are allowed doesn’t affect this argument in the slightest! In other words, we
once again have that((<

9

))
=

((>
0

)) ((?
9

))
+

((>
1

)) (( ?

9 − 1

))
+ · · · +

((>
9

)) ((?
0

))
.

We used the corresponding fact about
(<
9

)
’s to prove that 5< (F) = 5> (F) 5? (F) whenever

> + ? = <, and therefore 5< (F) = 51 (F)< . Does this work for the;< ’s? Can you even multiply
power series like that?

In fact you can! The key thing to notice is that, if you try tomultiply two power series, say

(00 + 01F + 02F2 + · · · ) (10 + 11F + 12F2 + · · · ),

then even though there are infinitely many terms, the coefficient of each F9 in the result only
depends on finitely many of them. This is simply because the only terms from the two original
power series that have any chance of givingme an F9 in the product are the ones with powers of
F less than or equal to 9 . More specifically, the coefficient on F9 in the product will be

0019 + 0119−1 + · · · + 0910,

just like for polynomials.
In otherwords, the relationshipwe foundbetween convolution andmultiplicationof polyno-

mials also holds for power series. And so, since the
(( <
9

))
’s have the same convolution relationship

to each other that the
(<
9

)
’s did, their generating functions;< also have the same relationship

to each other: we get that;>+? (F) = ;> (F);? (F), and therefore that;< (F) = ;1 (F)< .
Even though we also knew 5< (F) = 51 (F)< , this doesn’t mean;< just equals 5< , because;1

is not equal to 51. But it’s not that hard to compute;1 directly: it’s the generating function for
the

((
1
9

))
’s, and these numbers are all 1 regardless of 9 . (Nomatter what 9 is, there’s only one

way to pick 9 object with repeats from a set of size 1: you have to just pick that one object 9
times.) In other words,

;1 (F) = 1 + F + F2 + F3 + · · · .
You might recognize this series from calculus. It’s called the geometric series, and when

|F | < 1 it converges to 1/(1 − F). (If this doesn’t ring a bell, that’s fine! We’ll come back to the
identification of this series with 1/(1 − F) in just a bit.) If we use this, we get a nice formula for
our generating function:

;< (F) = (1 − F)−< .
Just as we did for the binomial coefficients, we can get our promised formula for

(( <
9

))
by differ-

entiating this 9 times. It’s good practice to work this out yourself, so I won’t list all the steps here,
but the final answer ends up being((<

9

))
=
(< + 9 − 1)!
9 !(< − 1)! =

(
< + 9 − 1

9

)
.
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You can even check to see that this gives the right answer for a few small choices of < and 9 if
you like!

3.2 Formal Power Series
Now, as promised, let’s talk a bit about the mathematical meaning of the operations we just
performed. As we said earlier, you’d be right to be suspicious about manipulating these infinite
power series exactly as though they were finite polynomials. And there are indeed plenty of
ways in which infinite series don’t behave as “nicely” as finite sums. So if we’re going to argue
(as in fact we are) that there are no such issues here, it would be nice to have some justification.

One ideamight be to think of our power series as Taylor series for particular functions, like
youprobably didwhen you studied calculus. It is possible to prove, for example, that if you’ve got
Taylor series for two functions 5 (F) and 6 (F), then 5 (F)6 (F) also has a Taylor series, and its F9
term can be found using our convolution formula, just like you’d expect by naivelymanipulating
power series like they were polynomials. One can also show that a function can only have one
Taylor series, whichweneed to knowwheneverwewant to argue that two sequences of numbers
must be equal term by term just because their generating functions are the same function.

While you could set things up this way, it is in a certain sensemissing the point. We don’t
really care aboutour generating functionsas functions, that is to say,we’re very seldom interested
in actually plugging numbers in for F . (Notice that this never happened once in either of the
previous two examples!) For our purposes, they’re essentially just a bookkeeping device for
keeping track of the sequences of coefficients, and especially for doing convolutions.

So instead of worrying about convergence, we can think of our power series that way: as just
a slightly funny notation for the sequence of coefficients (00, 01, 02, . . .). The corresponding
expression 00 + 01F + 02F2 + · · · is called a formal power series, “formal” because we are just
thinking of this as a string of symbols and not as a function you could potentially plug some F
into. (For this reason, the name “generating function” is kind of unfortunate! It might be better
to call them “generating power series” or something, but the name is pretty firmly established
so we’re going to use it.)

If we want to think of our generating functions as formal power series instead of functions,
then the operations we used tomanipulate themwill have to be built from scratch, since we
can’t fall back on thinking of them as functions. For example, since formal power series are
just strings of symbols, we’ll need to come up with a rule for how to add and multiply them.
The obvious thing to do is to say that, given two formal power series 5 (F) = 00 + 01F + · · ·
and 6 (F) = 10 + 11F + · · · , the sum 5 (F) + 6 (F) is the power series whose 9 ’th term is (09 +
19 )F9 , and the product 5 (F)6 (F) is the power series whose terms are given by our convolution
formula. (From here, a very careful treatment would also require checking that addition and
multiplication satisfy all the algebraic relationships you expect, like commutativity, associativity,
and distributivity. Feel free to try your hand at any of these if you’re interested!)

What about the fact that 1+F +F2 + · · · = 1/(1−F)? Didn’t that require thinking about Taylor
series and convergence and so on? You certainly can think of it that way, but that equation also
has a perfectly reasonable interpretation in terms of formal power series: it says that the power
series 1 + F + F2 + · · · is the multiplicative inverse of 1 − F . In other words, it says that if you
multiply 1 + F + F2 + · · · by 1 − F using the convolution rule, then you get 1, that is, you get that
the F0 coefficient is 1 and all the rest of the coefficients are 0. This is in fact true, and I strongly
encourage you to try to prove it!

Derivatives can be handled in a similar formal way: rather than worry about limits and
difference quotients, we can simply define the derivative of 00 +01F +02F2 +03F3 + · · · to be the
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power series 01 + 202F + 303F2 + · · · . Just as for addition andmultiplication, if you were worried
about proving everything you’d want to check here that this derivative operation satisfies the
product rule and chain rule and so on that you expect from calculus.

The formal power series perspective on generating functions is inmany ways “cleaner” than
thinking of them as actual functions. It absolves you of the need to worry about convergence—
which after all is irrelevant to us, since we don’t care about plugging values into our “functions”
— and in particular it enables you to work with power series that might not converge anywhere
except at F = 0. But it comes at the cost of requiring you, at least if you care about proving
everything, to rebuild all the basic operations like addition, multiplication, and differentiation
from scratch.

Whether this tradeoff feels “worth it” to you ismostly amatter of taste: while the convention
inmathematics is to think of generating functions as formal power series, if you strongly prefer
to think of them as Taylor series of actual functions, you won’t really lose out onmuch. (And
occasionally in can actually be useful to flip between the two perspectives.) Regardless, I hope to
convince you through the next couple of examples that they’re a very powerful tool for analyzing
sequences of numbers, and that remains true nomatter which way you think of them! We’ll
turn to those examples now.

4 Derangements
A permutation of 9 is a way of rearranging the numbers 1, 2, . . . , 9 so that each number appears
exactly once. For example, there are 6 permutations of 3: 123, 132, 213, 231, 312, and 321.

Counting permutations is pretty straightforward: you have 9 choices for the first number,
then 9 − 1 choices for the second number (since you can’t reuse the one you already picked),
9 − 2 choices for the third, and so on. All together, this gives you 9 · (9 − 1) · (9 − 2) · · · 1 = 9 !
permutations in total.

So there’s no need to get generating functions involved to count permutations, but they will
be helpful for answering a slightly trickier question. A permutation is a derangement if none of
the numbers ends up in its original place. For example, 312 is a derangement of 3, but 321 is
not, because the 2 stayed in the second position. Of the 4! = 24 permutations of 4, only 9 are
derangements: they are 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, and 4321. Our goal will
be to find a formula for the number of derangements of 9 .

Let’s call this number�9 . (So, for example, the previous computation demonstrates that
�4 = 9.) There’s a nice relationship between the number of permutations and the number of
derangements that will help us find a formula for�9 . Any permutation, whether it’s a derange-
ment or not, has some number of fixed points, that is, numbers that remain in their original
positions. For example, in the permutation 32415, the fixed points are the 2 and the 5. The thing
to observe is that, once you’ve identified the fixedpoints, the permutation acts as a derangement
on all the remaining numbers. (If not, one of themwould have been a fixed point!)

This gives us a clever way to relate the number of permutations to the number of derange-
ments: to specify a permutation of 9 , I can first pick some numbers, say > of them, to be the
fixed points, and then pick a derangement of the remaining 9 − > numbers. Since there are

(9
>

)
ways to pick the fixed points and�9−> ways to pick the derangement, we see that

9 ! =
(
9

0

)
�9 +

(
9

1

)
�9−1 +

(
9

2

)
�9−2 + · · · +

(
9

9

)
�0.
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The right side of this equation looks almost like a convolution of two sequences, which
would let us rewrite it in terms of a product of generating functions, but there’s one problem.
If we really had a convolution, say of two sequences (00, 01, . . .) and (10, 11, . . .), the 9 ’th term
would look like

0019 + 0119−1 + 0219−2 + · · · + 0910.
Inotherwords, itwouldbea sumwhose> ’th termcomes frommultiplying somethingdepending
just on> by something depending just on 9 − > . In our equation, we don’t quite have this— the
terms in our sum look like

(9
>

)
�9−> , and unfortunately

(9
>

)
depends on 9 as well as> .

Luckily, we can solve this if we use the formula for
(9
>

)
, which was 9 !

> !(9−>) ! . If you plug this in
and then divide everything by 9 !, we’re inmuch better shape: we get

1 =
1
0!9 !

�9 +
1

1!(9 − 1)!�9−1 +
1

2!(9 − 2)!�9−2 + · · · +
1
9 !0!

�0.

Now it looks like a convolution! Whatwe’ve learned is that convolving the sequence ( 10! ,
1
1! ,

1
2! , . . .)

with the sequence (�0
0! ,

�1
1! ,

�2
2! , . . .) gives us the sequence (1, 1, 1, . . .).

What does this mean in terms of generating functions? We already know the generating
function of the all-1’s sequence from the last section: it’s 1/(1 − F). The generating function of
the 1

9 ! sequence is probably familiar from calculus: recall that

4F =
1
0!
+ F
1!
+ F

2

2!
+ · · · .

The last one we’ll just have tomake up a name for, say

3 (F) = �0
0!
F + �1

1!
F + �2

2!
F2 + · · · .

When you rewrite our equation with the convolution in terms of these generating functions,
you get 4F3 (F) = 1/(1 − F). Luckily, this is very easy to solve: we see that

3 (F) = 4−F

1 − F .

(After the whole discussion of formal power series in the last section, it would be under-
standble if you were a bit squeamish about the appearance of 4F here. Isn’t that an actual
function, not just a formal power series? It is, of course, but for the computation we’re doing
here there’s no reason you have to know that! If we wanted to stick purely to formal power series,
we could define 4F to be the formal power series whose 9 ’th term is F9/9 !. For our argument to
work this way, you’d then have to prove that when youmultiply this formal power series by the
formal power series for 4−F , you get 1. You can in fact do this without any calculus, although
it’s somewhat tricky, and we won’t do it here. It’s related to the fact that the alternating sum(<
0
)
−

(<
1
)
+

(<
2
)
− · · · ±

(<
<

)
is always zero unless < = 0.)

From here, it’s not that long a road to the promised formula for�9 . Rather than spell out all
the steps here, I’ll leave it as an exercise and just state the final answer: you end up with

�9

9 !
=
1
0!
− 1
1!
+ 1
2!
− · · · ± 1

9 !
.

In other words, you alternate plus andminus signs on each successive term, meaning that the
sign on the 1/9 ! term at the end depends on whether 9 is odd or even. (If you try to prove this
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yourself, try directly multiplying the power series for 4−F by the power series for 1/(1 − F). What
does the coefficient of F9 end up being?)

You could of course multiply this by 9 ! to get�9 by itself, but the way it’s written here opens
up another intriguing interpretation: because there are 9 ! permutations in total, the left side
gives the probability that a randomly chosen permutation is a derangement. If you plug −1 into
the power series for 4F , you get that

4−1 =
1
0!
− 1
1!
+ 1
2!
− · · · ,

which gives us the surprising fact that as 9 gets large, the probability that a randompermutation
of 9 is a derangement approaches 1/4 .

In fact, it approaches 1/4 quite quickly: because this is an alternating series, the sum on the
right side of our equation is within 1/(9 + 1)! of the limit. This means that�9 is actually always
the closest integer to 9 !/4 when 9 is at least 1, so you can also compute�9 by just dividing 9 ! by
4 and then rounding! For example, 4!/4 ≈ 8.8291, and we counted at the start of the section that
�4 = 9.

5 The Fibonacci Numbers
We’ll close with an application of generating functions that doesn’t involve any convolutions.
It comes from the famous Fibonacci sequence. This is the sequence of numbers which starts
with �0 = 0 and �1 = 1, and where every term from �2 onward is the sum of the previous two
terms. The sequence starts with 0, 1, 1, 2, 3, 5, 8, 13, 21, . . ..

Let’s see if we can write down the generating function for the Fibonacci sequence. Say

1 (F) = �0 + �1F + �2F2 + �3F3 + · · ·
= F + F2 + 2F3 + · · · .

The fact that each term (after the first two) is the sumof the previous two can be expressed pretty
compactly as a fact about 1 (F) using the following trick: multiplying a generating function by F
just shifts all the coefficients over by one. This means that

F1 (F) + F21 (F) = �0F + (�0 + �1)F2 + (�1 + �2)F3 + (�2 + �3)F4 + · · · .

When you do this, the coefficient on F9 (for 9 ≥ 2) ends up being �9−1 + �9−2, which is just
equal to �9 . In other words, F1 (F) + F21 (F) is almost just 1 (F) itself: the only difference is that
(since �0 = 0) we’re missing the F at the beginning of 1 (F). This is easy to fix, though: just add it
back on. We end up with the equation

1 (F) = F1 (F) + F21 (F) + F.

This is fairly straightforward to solve for 1 (F), giving us our generating function

1 (F) = −F
F2 + F − 1 .

Let’s try to turn this into a formula for the Fibonacci numbers. We already know how to turn
1/(1 − F) into a power series, and by plugging in the right values for F , we could extend this to

https://en.wikipedia.org/wiki/Alternating_series
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anythingwith a linear polynomial in the denominator. This suggests that itmight be nice to find
an expression for 1 (F) involving linear denominators, rather than the quadratic we’ve got now.

Youmight ormight not know that there’s a fairly mechanical way to do this called partial
fraction decomposition. Going through all the steps in detail doesn’t make for themost exciting
reading, so we’ll do it very quickly here, and I encourage you to fill in the gaps if you’re interested.

The first step is to factor that quadratic that shows up in the denominator. Using the
quadratic formula, we can get that F2 + F − 1 = (F + q) (F + q̄), where

q =
1 +
√
5

2
; q̄ =

1 −
√
5

2
.

This number q is famous: it’s called the golden ratio, and it has a lot of delightful properties
which we sadly don’t have space for here. The only thing we’ll need for the present conversation
is its role in the factorization of this particular polynomial.

The next step in the partial fractions procedure is to write

−F
F2 + F − 1 =

−F
(F + q) (F + q̄)

=
>

F + q +
?

F + q̄

and solve for> and ? . After some straightforward but tedious algebra, you end up with

> = − q√
5
, ? =

q̄
√
5
,

and so
1 (F) = 1

√
5

(
q̄

F + q̄
− q

F + q

)
.

This is a big improvement: now all that’s left to do is to plug in our formula for the power
series of 1/(1 − F). Tomake the algebra slightly easier, it will help to first work out that

0

F + 0 =
1

1 + F/0 =
1

1 − (−F/0) = 1 + (−F/0) + (−F/0)2 + · · · .

When you plug this into our new formula for 1 (F), the 9 ’th term ends up being

1
√
5

((
− 1
q̄

)9
−

(
− 1
q

)9 )
F9 .

This can bemade to look somewhat nicer using the fact (which you can verify yourself if
you like) that −1/q̄ = q and −1/q = q̄ . With this in place, we finally get the nice formula

�9 =
1
√
5
(q9 − q̄9 ).

Since |q̄ | < 1, the second term inside the parentheses gets small pretty quickly, so q9/
√
5 is

a pretty good approximation to the Fibonacci sequence for large 9 . In particular, this gives a
proof of the somewhat famous fact that the ratio between two consecutive Fibonacci numbers
approaches the golden ratio as you go further out in the sequence. (In fact, |q̄9/

√
5| is always

less than 1
2 , so kind of like we saw for derangements in the last section, you can also compute

�9 by just rounding q9/
√
5 to the nearest integer.)
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6 Final Thoughts
If you don’t worry about the details, you could describe all four of the examples we just went
through— binomial coefficients, multiset binomial coefficients, derangements, and Fibonacci
numbers— in essentially the same way. We started with some sequence of numbers we wanted
to understand, then found some equation expressing some relationship that the numbers in
the sequence had to each other. In each case, we found a way to express this relationship as
an equation involving the generating function of the sequence, which we could solve for the
generating function itself, and finally we went from here to a formula for the sequence we
wanted.

One thing worth emphasizing is how mechanical this process can be once we have our
hands on the generating function. This is one of the nicest features of this method: it might
take some thinking to produce the generating function, but from there it’s often just a matter of
“turning the crank” to get an expression for the coefficients. I shouldmention that things are not
always so nice! Later in this series we’ll explore some examples where it’s much easier to find
the generating function for a sequence than it is to produce a formula for the terms, and even
some where such a formula is not even known.

Evenwhen this happens, the generating function can often be a useful source of information,
even if that information is not as complete as it was in the cases we went through here. There’s
muchmore to be said here, and I hope you’ll stick around!
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