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Hamiltonian and Lagrangian
Mechanics

Nic Ford

1 Introduction
This article is the first in a series I plan to write about physics for a mathematically trained
audience. We’re going to start by talking about classical mechanics, the stuff that your first
physics class was probably about if you’ve ever taken one. The formulation of classical physics
usually presented in introductory physics classes is called Newtonianmechanics; it talks about
things like masses and forces and Newton’s laws of motion. Newtonianmechanics is easy to
teach and to work with without much machinery, but it has some features that can make it
difficult to analyze mathematically. Physical systems and their interactions are described in
terms of coordinates with velocity and force vectors all over the place, and it can be difficult to
know how to deal with things like symmetries and constraints.

There are other, equivalent ways of describing classical mechanics, sometimes collectively
called “analyticalmechanics,” which aremuch easier to describe in a coordinate-freeway. At the
cost of a bit more abstraction, the analytical formulations have two big advantages: theymake
it easier to set up and solve some very complicatedmechanics problems and, probably more
importantly for our purposes, theymake the relationship between classical mechanics and its
generalizations most clear. The twomost prominent such formulations are called Hamiltonian
and Lagrangian mechanics, and they’re what we’re going to discuss in this article. They are,
as we’ll see, two different ways of saying the same thing, but they highlight different enough
aspects of the situation that they’re worth talking about separately.

This article assumes somemathematical background beyond what’s usually used to present
these ideas in a physics class that covers them. In particular, the reader is expected to be familiar
with the basics of the theory of smooth manifolds to the level of someone who’s finished a
one-semester class on the subject. I will assume you remember a little bit about physics, but
that you have never seen the Hamiltonian and Lagrangian frameworks discussed here.

I am very grateful to Jeff Hicks and Jake Levinson for their many helpful comments on
earlier drafts of this article. Some of the examples and a couple ideas about the presentation are
adapted fromGerald Folland’sQuantum Field Theory: A Tourist Guide for Mathematicians and
Michael Spivak’s Physics for Mathematicians: Mechanics I, both of which I recommend.

http://nicf.net/articles/physics-for-mathematicians


Section 2 HamiltonianMechanics 2

2 HamiltonianMechanics

2.1 The Newtonian Setup
We’ll start by briefly describing, in coordinates, the sort of Newtonianmechanics problemwe’re
eventually going to be describing in a coordinate-free way. The prototypical example to keep in
mind is that of a collection of𝑁 particles moving inR3 where particle 𝑖 hasmass𝑚𝑖 . We’ll write
the position of particle 𝑖 as q𝑖 , with the boldface there to remind you that it’s an element ofR3

and not anR-valued coordinate onR3𝑁 . We’ll write p𝑖 = 𝑚𝑖 (𝑑q𝑖/𝑑𝑡 ) for themomentum of
particle 𝑖 .

In the Newtonian setup, we describe physics in terms of forces; we imagine that there is
some vector F𝑖 we can compute for each particle for all time which tells us how that particle is
accelerating, or equivalently, how its momentum is changing. Specifically, the relationship is
given by “Newton’s second law”:

F𝑖 =
𝑑p𝑖
𝑑𝑡

= 𝑚𝑖
𝑑2q𝑖
𝑑𝑡 2

.

In general one could imagine these forces depending on any data whatsoever about the
physical system, but we’re going to bemost interested in the case of conservative forces. This is
the case where there is a function𝑉 onR3𝑁 called a potential for which the force on particle 𝑖
is given by

F𝑖 = − 𝜕𝑉

𝜕q𝑖
.

So the force is given by the gradient of a function which depends only on positions, not on
momenta. This condition is equivalent to saying that the integral of the force vector field around
a closed loop— a quantity called thework done by the force while traveling around the loop—
is always zero.

The name “conservative” comes from the fact that, suitably interpreted, this last condition is
what wemean by saying that energy is conserved. There aremany physical phenomena that are
oftenmodeled as nonconservative forces; friction is probably themost familiar example. But
an overwhelming amount of physical evidence points toward the belief that the fundamental
laws of physics do conserve energy, and that physical models of things like friction aremerely
“neglecting” the energy that leaks into forms like heat and sound that aremore difficult tomodel.
It is possible, but somewhat painful, to set up Hamiltonianmechanics in a way that allows for
things like friction, but we’re going to focus on the conservative case in this article.

Throughout this short description we’ve already done things that make it difficult to keep
track of what needs to be done with all these quantities when we change coordinates. The force
on a particle is given by a gradient, and each momentum coordinate is “attached” to both a
mass and a particular spatial coordinate. It will often be convenient to switch to a coordinate
system that does not isolate each particle so neatly in its own triple of coordinates, or even one
that mixes what we are now calling position andmomentum coordinates. This all cries out for a
description that describes the physical system in terms of points on amanifold, to whichwe can
assign coordinates only once we know how all themathematical objects involved are defined
intrinsically.
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2.2 Configuration Space and Phase Space
We’ll start our quest for a coordinate-free description of mechanics by fixing a smoothmanifold
𝑄 which we’ll call configuration space. You should think of a point in𝑄 as corresponding the
“position” of each component of a physical system at some fixed time. Some examples worth
keeping inmind are:

1. A particle moving inR3. In this case,𝑄 is justR3.

2. 𝑁 particles moving inR3. We specify the configuration of this system by specifying the
position of each particle, which we can do using a point inR3𝑁 .

3. Two particles connected by a rigid rod of length ℓ. We could describe the configuration of
this system using a point in {(𝑎, 𝑏) ∈ R3 ×R3 : | |𝑎 − 𝑏 | | = ℓ}.

4. A rigid bodymoving through space. We could describe its configuration using a point in
R3 × 𝑆𝑂 (3), specifying the location of the object’s center of mass and its orientation.

In particular, specifying a point 𝑞 ∈ 𝑄 gives you an instantaneous snapshot of the system,
but it doesn’t tell you anything about it’s changing. Even if you have a complete description of
the physics, this doesn’t provide enough information to predict how the systemwill evolve in
the future. (Imagine a ball rolling on a table; if you just know its position and not its velocity you
don’t knowwhere it’s about tomove.)

So if we want to describe the state of a physical system in a way that allows us to do physics,
the state needs to carry some additional information. Different formulations of analytical
mechanics do this in different ways, and unfortunately the version used by the Hamiltonian
formulation is one of the more opaque choices: the state of a physical system is given by
specifying a point in the cotangent bundle of𝑄 , which tomatch with physicists’ conventions
we will call phase space. We’ll usually use the coordinates (𝑞,𝑝) to refer to a point in phase
space. (So 𝑞 is a point in𝑄 and 𝑝 is a cotangent vector at 𝑞 .) When the system is in the state
(𝑞,𝑝), we’ll call𝑝 themomentum.

The first time I encountered this setup I was confused by the fact that momentum is repre-
sented by a cotangent vector rather than a tangent vector— after all, the velocity of a particle is
definitely a tangent vector, andmomentum is supposed to be amultiple of it.

It will be easier to talk about this once we have the finished picture in front of us, but we
can say a bit right now. While velocities should inarguably be tangent vectors— a velocity is
literally the time derivative along the path that a particle is following— it’s actually not clear
that this extends tomomenta. When we use the word “momentum” we will mean something
more general than “mass times velocity”; the two will coincide for Newtonian mechanics in
rectangular coordinates but they can be different in general. For example, if we have a particle
of mass 𝑚 moving in R2 and use polar coordinates, the momentum corresponding to the
𝜃 coordinate turns out to be the angular momentum 𝑥𝑝𝑦 − 𝑦𝑝𝑥 , which is not 𝑚 (𝑑𝜃/𝑑𝑡 ) =

(𝑥𝑝𝑦 − 𝑦𝑝𝑥 )/(𝑥2 + 𝑦 2).
Of course I have not yet said what it means for one expression or another to be the “right”

generalization ofmomentum to a given coordinate system, but the point is that the relationship
betweenmomentum coordinates and derivatives of the corresponding position coordinates
depends on the physical meaning of those coordinates; it’s not something you can extract just
by looking at configuration space. (Indeed, this is true even in rectangular coordinates: the
relationship depends on themass of the particle, which is a physical quantity.) We’ll return to
this question later.
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2.3 Symplectic Geometry
To properly describe Hamiltonian mechanics, we’ll need some basic facts about symplectic
geometry, which we’ll briefly go over now in case they aren’t familiar.

A symplectic manifold is a smoothmanifold𝑀 together with a choice of a nondegenerate
closed 2-form 𝜔 on𝑀 . (That is, the antisymmetric bilinear form 𝜔 defines on each tangent
space is nondegenerate and𝑑𝜔 = 0. We’ll see soonhoweach of these two conditions is relevant.)
A diffeomorphism between two symplectic manifolds that preserves the symplectic form is
called a symplectomorphism.

The main thing that will turn out to make Hamiltonian mechanics go is the fact that the
cotangent bundle of a manifold naturally has the structure of a symplectic manifold. The cotan-
gent bundle of anymanifold comes with a canonical symplectic formwhich can be described
pretty simply. We start by defining the tautological 1-form on𝑇 ∗𝑄 . Given a tangent vector 𝑣
at a point (𝑞,𝑝) ∈ 𝑇 ∗𝑄 , we’ll write 𝜃 (𝑣 ) = 𝑝 (𝜋∗ (𝑣 )), where 𝜋 : 𝑇 ∗𝑄 → 𝑄 is the projectionmap.
Given a local coordinate system 𝑞1, . . . , 𝑞𝑛 on a chart on𝑄 , we also get coordinates𝑝1, . . . , 𝑝𝑛
on each cotangent space. I encourage you to check that in these coordinates

𝜃 =

𝑛∑︁
𝑖=1

𝑝𝑖𝑑𝑞𝑖 .

We then define 𝜔 = 𝑑𝜃 , so that in these same coordinates

𝜔 =

𝑛∑︁
𝑖=1

𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 ,

which is clearly nondegenerate.
One very striking difference between Riemannian and symplectic geometry is that in a

neighborhood of any point on any symplectic manifold (even if it’s not a cotangent bundle)
there is a coordinate system𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛 forwhich𝜔 =

∑
𝑖 𝑑𝑝𝑖 ∧𝑑𝑞𝑖 . This result is called

“Darboux’s theorem” and the 𝑞 ’s and𝑝 ’s are said to provide canonical coordinates. This means
that, very unlike on a Riemannianmanifold, a symplectic manifold has no local geometry, so
there’s no symplectic analogue of anything like curvature.

Even though phase space will end up being the only symplectic manifold we’ll use to do
physics, it’s actually cleaner to describe the requiredmachinery inmore generality, so for now
𝑀 will be an arbitrary symplectic manifold. We’ll return to the case of phase space soon.

Since 𝜔 puts a nondegenerate bilinear form on each tangent space, it gives an isomorphism
between the tangent and cotangent spaces at each point of𝑀 , and therefore an isomorphism
between vector fields and 1-forms. We will especially be interested in this isomorphism in the
casewhere the 1-form is𝑑 𝑓 for some function 𝑓 . In this case, we’ll write𝑋 𝑓 for the unique vector
field for which 𝜔 (𝑌 , 𝑋 𝑓 ) = 𝑑 𝑓 (𝑌 ) for all𝑌 . (There is an arbitrary sign choice to make here—
I could have said that 𝜔 (𝑋 𝑓 ,𝑌 ) = 𝑑 𝑓 (𝑌 ). As always happens with such things, this decision
seems to about evenly split the authors of books on this subject. Hamilton’s equations, discussed
below, do have an arrangement of signs that everyone agrees on, and I’ve made choices in this
section that are consistent with that.)

This vector field is sometimes called the symplectic gradient of 𝑓 ; if we had a Riemannian
metric instead of 𝜔 here then this construction would of course give the usual gradient. It’s
worth emphasizing, though, that while a Riemannian gradient of 𝑓 (usually) gives a direction in
which 𝑓 is increasing, the symplectic gradient gives a direction in which 𝑓 is constant, since
𝑋 𝑓 ( 𝑓 ) = 𝑑 𝑓 (𝑋 𝑓 ) = 𝜔 (𝑋 𝑓 , 𝑋 𝑓 ) = 0.
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Given any vector field 𝑋 at all on a smooth manifold, the existence and uniqueness of
solutions of ODE’s lets us define a flow, that is, a one-parameter group of diffeomorphisms
𝜙𝑡 : 𝑀 → 𝑀 for which

𝑑

𝑑𝑡

����
𝑡=0

𝜙𝑡 (𝑎) = 𝑋 |𝑎

for any point 𝑎 ∈ 𝑀 , where the notation 𝑋 |𝑎 means the tangent vector we get by restricting 𝑋
to 𝑎 . (In general the flowmight only be defined for 𝑡 in some neighborhood of 0, but this will
always be enough for our purposes.) The flow is used to construct the Lie derivative of a tensor
field with respect to a vector field. In order to take any sort of derivative of a tensor field on a
manifold it’s necessary to be able to compare values of the tensor field at different points, and
the flow gives us a way to do this. We define

L𝑋 (𝑇 ) =
𝑑

𝑑𝑡

����
𝑡=0

(𝜙𝑡 )∗ (𝑇 ).

A vector field that arises as a symplectic gradient— that is, as 𝑋 𝑓 for some 𝑓 — is called a
Hamiltonian vector field and the corresponding flow is called aHamiltonian flow. Note that
since the definition of 𝑋 𝑓 depends on 𝜔, in order for the Hamiltonian flow corresponding to a
function tomake sense, it’s necessary for𝜔 to be preserved by the flow. Otherwise after running
time forward using the flow our vector field won’t be 𝑋 𝑓 for the same 𝑓 anymore!

So we’d like to characterize the 𝑋 for whichL𝑋𝜔 = 0. To do this we invoke Cartan’s magic
formula, which says thatL𝑋 = 𝜄𝑋 ◦ 𝑑 + 𝑑 ◦ 𝜄𝑋 . (Here 𝜄𝑋 is the interior productwith 𝑋 , which is
themap from 𝑑-forms to (𝑑 − 1)-forms defined by 𝜄𝑋 𝛼 (𝑌1, . . . ,𝑌𝑑−1) = 𝛼 (𝑋 ,𝑌1, . . . ,𝑌𝑑−1).) This
is where we use the fact that 𝜔 is closed: we see that

L𝑋𝜔 = 𝜄𝑋 (𝑑𝜔) + 𝑑 (𝜄𝑋𝜔) = 𝑑 (𝜄𝑋𝜔).

If 𝑋 corresponds to 𝛼 under the isomorphism between vector fields and 1-forms given by 𝜔,
then 𝜄𝑋𝜔 = −𝛼 by definition, so we see that flowing along 𝑋𝛼 preserves 𝜔 if and only if 𝛼 is
closed. In particular, since 𝑋 𝑓 corresponds to 𝑑 𝑓 , all Hamiltonian flows preserve 𝜔.

It will be important for us to analyze how functions change along Hamiltonian flows; we
will, in fact, basically be translating all the physical questions this framework can address into
what values functions take along a Hamiltonian flow. That is, if 𝑋 𝑓 is a Hamiltonian vector field,
𝑎 is a point in𝑀 , and 𝑔 is a function on𝑀 , we’d like to compute 𝑑𝑔 /𝑑𝑡 along the flow of 𝑋 𝑓

through 𝑎 . By definition, this is just 𝑋 𝑓 (𝑔 ), so by the definition of 𝑋𝑔 ,

𝑑𝑔

𝑑𝑡
= 𝑋 𝑓 (𝑔 ) = 𝑑𝑔 (𝑋 𝑓 ) = 𝜔 (𝑋𝑔 , 𝑋 𝑓 ).

This fact will turn out to be important enough to warrant a definition: we’ll write {𝑔 , 𝑓 } =

𝜔 (𝑋𝑔 , 𝑋 𝑓 ) andcall it thePoissonbracketof 𝑔 and 𝑓 . Aswe just saw, thePoissonbracketmeasures
how 𝑔 changes along the Hamiltonian flow corresponding to 𝑓 . In particular, {𝑔 , 𝑓 } = 0 if and
only if 𝑓 ’s Hamiltonian flow preserves 𝑔 . Note also that the Poisson bracket is antisymmetric
(because𝜔 is), whichmeans that 𝑓 ’s Hamiltonian flowpreserves 𝑔 if and only if 𝑔 ’s Hamiltonian
flow preserves 𝑓 . (The Poisson bracket in fact turns out to put a Lie algebra structure on𝐶∞ (𝑀 )
— that is, it also satisfies the Jacobi identity— but we won’t need this fact here.)

So, to summarize:

• Phase space, being the cotangent bundle of configuration space, has a natural symplectic
structure. In coordinates, the symplectic form is given by 𝜔 =

∑
𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 .
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• On any symplectic manifold, we can associate to each function 𝑓 a vector field 𝑋 𝑓 , and
vector fields arising in this way are called Hamiltonian vector fields. Flowing along a
Hamiltonian vector field always preserves the symplectic form.

• This construction lets us define the Poisson bracket {𝑔 , 𝑓 } = 𝜔 (𝑋𝑔 , 𝑋 𝑓 ), whichmeasures
both how 𝑓 changes when flowing along 𝑋𝑔 and how 𝑔 changes when flowing along 𝑋 𝑓 .

• Since flowing along a vector field 𝑋 preserves 𝜔 if and only if the corresponding 1-form
𝛼 is closed, we can reverse this entire process if𝑀 is simply connected. In that case,
𝛼 = 𝑑 𝑓 for some 𝑓 , so 𝑋 = 𝑋 𝑓 , and 𝑓 is uniquely determined up to adding a constant. So
if𝑀 is simply connected (or if not, then in an open neighborhood of any point), there
is a one-to-one correspondence between vector fields whose flow preserves 𝜔 and smooth
functions on𝑀 modulo constants.

2.4 Phase Space and Hamiltonians
We’re now ready to see how thismachinery can allow us to do physics. We fix amanifold𝑄 called
configuration space, and we write 𝑃 = 𝑇 ∗𝑄 for its cotangent bundle, which we’ll call phase
space. The basic assumption of Hamiltonianmechanics is that the way we “run time forward”
in our physical system is by following the Hamiltonian flow corresponding to a distinguished
function𝐻 , which we’ll call theHamiltonian. That is, if our system is in state (𝑞,𝑝) at time 𝑡0
and 𝜙𝑡 is the flow along 𝑋𝐻 , then our system is in state 𝜙𝑡 (𝑞,𝑝) at time 𝑡 + 𝑡0.

Suppose we are using local coordinates 𝑞1, . . . , 𝑞𝑛 , 𝑝1, . . . , 𝑝𝑛 in which the symplectic form
can be written as 𝜔 =

∑
𝑖 𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 . Given two vector fields

𝑋 =
∑︁

(𝑎𝑖𝜕𝑞𝑖 + 𝑏𝑖𝜕𝑝𝑖 ), 𝑋 ′ =
∑︁

(𝑎 ′
𝑖 𝜕𝑞𝑖 + 𝑏 ′

𝑖𝜕𝑝𝑖 ),

we get that 𝜔 (𝑋 , 𝑋 ′) = ∑(𝑏𝑖𝑎 ′
𝑖
− 𝑎𝑖𝑏

′
𝑖
). I encourage the reader to verify that this means that for

a function 𝑓 ,
𝑋 𝑓 =

∑︁
𝑖

(
𝜕𝑓

𝜕𝑝𝑖
𝜕𝑞𝑖 −

𝜕𝑓

𝜕𝑞𝑖
𝜕𝑝𝑖

)
,

and that the Poisson bracket is given by

{𝑓 , 𝑔 } =
∑︁
𝑖

(
𝜕𝑓

𝜕𝑞𝑖

𝜕𝑔

𝜕𝑝𝑖
− 𝜕𝑓

𝜕𝑝𝑖

𝜕𝑔

𝜕𝑞𝑖

)
.

If we’ve chosen a Hamiltonian𝐻 , then the value of a function 𝑓 evolves through time ac-
cording to solutions of the differential equation 𝑑 𝑓 /𝑑𝑡 = {𝑓 ,𝐻 }. Plugging in 𝑞𝑖 and𝑝𝑖 for 𝑓 , we
getHamilton’s equations:

𝑑𝑞𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑝𝑖
,

𝑑𝑝𝑖

𝑑𝑡
= −𝜕𝐻

𝜕𝑞𝑖
.

As we saw in the last section, Hamiltonian flows always preserve their corresponding func-
tion, so the Hamiltonian itself ought tomeasure some scalar quantity that doesn’t change as
timemoves forward. In classical physics there’s really only one such quantity to choose: the
value Hamiltonian at a point in 𝑃 ought to be physically interpreted as the total energy of the
systemwhen it is in that state.

In particular, consider the case where {𝑓 ,𝐻 } = 0. This happens exactly when𝐻 ’s Hamil-
tonian flow preserves 𝑓 , that is, 𝑓 is conserved by the laws of physics. But it is also equivalent
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to the claim that 𝑓 ’s Hamiltonian flow preserves𝐻 , that is, flowing along 𝑋 𝑓 preserves𝐻 . This
phenomenon gives us the Hamiltonianmechanics version of a result calledNoether’s theorem:
going between 𝑋 𝑓 and 𝑓 gives us a one-to-one correspondence between Hamiltonian vector
fields whose flow preserves𝐻 (that is, vector fields whose flow preserves both𝐻 and 𝜔) and
scalar functions which are conserved by the laws of physics.

Let’s see how to recover Newtonianmechanics. Inmechanics problems, energy is usually
given as a sum of two terms, one representing kinetic energy, written𝑇 , and one representing
potential energy, written𝑉 . In our Newtonian example from above, the kinetic energy is the
usual

𝑇 =
∑︁
𝑖

1
2𝑚𝑖

����𝑑q𝑖𝑑𝑡

����2 = ∑︁
𝑖

|p𝑖 |2
2𝑚𝑖

,

and the potential energy is simply our potential function𝑉 . So our Hamiltonian all together is:

𝐻 (𝑞,𝑝) = 𝑇 (𝑝) +𝑉 (𝑞) =
∑︁
𝑖

|p𝑖 |2
2𝑚𝑖

+𝑉 (𝑞),

and then, combining the three coordinates for each particle into a single vector, Hamilton’s
equations give us

𝑑q𝑖
𝑑𝑡

=
𝜕𝐻

𝜕p𝑖
=
p𝑖
𝑚𝑖

𝑑p𝑖
𝑑𝑡

= −𝜕𝐻

𝜕q𝑖
= − 𝜕𝑉

𝜕q𝑖
.

Note that Hamilton’s first equation exactly tells you how to compute the velocity of a particle
once you know its momentum, which does something to address the concern we had earlier.
Importantly, we see that this relationship depends on Hamiltonian; asking which velocity
corresponds to a givenmomentum is meaningless until you’ve specified the laws of physics.

For ourmechanical Hamiltonian, since the kinetic energy term is a homogeneous quadratic
function of the momentum, we think of it as corresponding to a Riemannianmetric on configu-
ration space. In order to get agreement between the two ways of translating between velocity
andmomentum—using the inner product or going through Hamilton’s first equation—we
need to include the masses of the particles in the metric, so that in our case for two tangent
vectors 𝑣,𝑣 ′ we have

⟨𝑣,𝑣 ′⟩𝑇 =
∑︁
𝑖

𝑚𝑖 ⟨v𝑖 , v′𝑖 ⟩

where ⟨·, ·⟩ is the usual inner product onR3. This induces ametric on the cotangent space given
by

⟨𝑝,𝑝 ′⟩𝑇 =
∑︁
𝑖

⟨p𝑖 ,p′𝑖 ⟩
𝑚𝑖

,

so following this convention the Hamiltonian would be written

𝐻 (𝑞,𝑝) = 1
2 ⟨𝑝,𝑝⟩𝑇 +𝑉 (𝑞).
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2.5 Examples
2.5.1 The Harmonic Oscillator
First, let’s consider a harmonic oscillator. This is a physical systemwith one degree of freedom 𝑞

in which the potential energy has the form 1
2𝑘𝑞

2 for some 𝑘 . (The factor of 12 is of course purely
for convenience.) This is a decent model for, for example, a mass attached to a light, frictionless
spring.

If themass of this particle is𝑚, then ourHamiltonian is𝐻 = 𝑝2/2𝑚 +𝑘𝑞2/2, andHamilton’s
equations are

𝑑𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑𝑝

𝑑𝑡
= −𝑘𝑞.

This is of course a very easy pair of differential equations to solve: you get, writing 𝛼 =
√︁
𝑘/𝑚,

that 𝑞 = 𝐴 sin(𝛼 (𝑡 − 𝑡0)) and𝑝 = 𝐴𝛼 cos(𝛼 (𝑡 − 𝑡0)) for some 𝐴 and 𝑡0.
So far this analysis is basically identical to what we would have gotten using regular Newto-

nianmechanics. Still, even though we just found a solution, we can get some practice with this
machinery by performing a change of coordinates that makes the solution even easier. These
solutions lie on the ellipse (𝛼𝑞)2 +𝑝2 = 𝐴2, which suggests that we ought to rescale 𝑞 and𝑝 and
switch to polar coordinates.

So let’s first try setting 𝑟 =
√︁
𝑘𝑞2 + 𝑝2/𝑚 and 𝜃 = arctan(

√
𝑘𝑚𝑞/𝑝); these are the polar

coordinates corresponding to 𝑝 = 𝑝/
√
𝑚 and 𝑞 =

√
𝑘𝑞 . Sadly, this doesn’t quite do what we

want: these aren’t canonical coordinates, that is, the symplectic form isn’t 𝑑𝑟 ∧ 𝑑𝜃 . Indeed,

𝜔 = 𝑑𝑝 ∧ 𝑑𝑞 =

√︂
𝑚

𝑘
𝑑𝑝 ∧ 𝑑𝑞 =

√︂
𝑚

𝑘
𝑟𝑑𝑟 ∧ 𝑑𝜃.

It would be possible to work out the form of the Poisson bracket in these coordinates and
see what equations we get, but it’s even easier to just find coordinates that are canonical and
use those. We can do this by replacing 𝑟 with 𝑠 = 1

2
√︁
𝑚/𝑘𝑟 2 = 𝑟 2/2𝛼. We then have𝜔 = 𝑑𝑠 ∧ 𝑑𝜃

and𝐻 = 𝛼𝑠 , and so Hamilton’s equations are

𝑑𝜃

𝑑𝑡
=
𝜕𝐻

𝜕𝑠
= 𝛼

𝑑𝑠

𝑑𝑡
= −𝜕𝐻

𝜕𝜃
= 0.

This analysismakes it obvious that 𝑠 is a conservedquantity— that’s literallywhat the second
equation says. This is equivalent to saying that {𝑠 ,𝐻 } = 0, which we could have checked in the
original coordinates if we wanted. In this case this is all kind of silly, since 𝑠 is just a constant
multiple of𝐻 ; the next example will feature a less silly version of this phenomenon.

2.5.2 The Two-Body Problem
Consider two particles, withmasses𝑚1 and𝑚2, moving under the influence of a conservative
force that depends only on their relative positions, that is, on the difference q1 − q2. (You
might imagine for example two celestial bodies moving under the influence of gravity.) So our
configuration space isR3 ×R3, and our Hamiltonian is

𝐻 =
|p1 |2
2𝑚1

+ |p2 |2
2𝑚2

+𝑉 (q1 − q2)

for some function𝑉 .
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We can already see another case of Noether’s theorem here. The fact that𝑉 depends only on
q1 − q2means that if we translate both particles by the same vector and leave their momenta
fixed,𝐻 is unchanged. For concreteness let’s consider translating in the positive 𝑥 direction;
this corresponds to flowing along the vector field 𝜕𝑥1 + 𝜕𝑥2 (writing 𝑥𝑖 for the 𝑥 component of
q𝑖 ). These translations also self-evidently preserve the symplectic form, and so our vector field
must be Hamiltonian. And indeed, it’s 𝑋 𝑓 for 𝑓 = (𝑝1)𝑥 + (𝑝2)𝑥 , the 𝑥 component of the total
momentum of the system. You could also check directly that the Poisson bracket {𝑓 ,𝐻 } is zero.
So we see that a Hamiltonian that is preserved by translations in some direction corresponds to
physics that preserve the component of total momentum in that direction.

There is a common change of coordinates that makes this system a bit easier to analyze:
write

Q =
𝑚1q1 +𝑚2q2
𝑚1 +𝑚2

q = q1 − q2.

Now, given any diffeomorphism 𝑓 from amanifold𝑄 to itself, we can lift it to a diffeomorphism
on the cotangent bundle by setting 𝑓 ♯ (𝑞,𝑝) = ( 𝑓 (𝑞), ( 𝑓 −1)∗ (𝑝)). We call 𝑓 ♯ the cotangent lift
of 𝑓 . It turns out that a diffeomorphism on a cotangent bundle has the form of a cotangent
lift if and only if it preserves the canonical 1-form 𝜃 . To compute 𝑓 ♯ in coordinates, first note
that ( 𝑓 −1)∗ (𝑝) (𝑣 ) = 𝑝 (( 𝑓 −1)∗ (𝑣 )) = 𝑝 (( 𝑓∗)−1 (𝑣 )) by definition, so the matrix for ( 𝑓 −1)∗ is the
transpose of the inverse of the Jacobian of 𝑓 .

So in particular, the cotangent lift gives us a natural way to turn any diffeomorphism on
configuration space into a symplectomorphism on phase space. Once can check that doing this
for our change of coordinates here gives us themomentum coordinates

P = p1 + p2 p =
𝑚2p1 −𝑚1p2

𝑚1 +𝑚2
,

and our Hamiltonian becomes

𝐻 =
|P|2
2𝑀 + |p|2

2𝑚 +𝑉 (q),

where𝑀 = 𝑚1 + 𝑚2 and𝑚 = 𝑚1𝑚2/(𝑚1 + 𝑚2). (The reader is encouraged to verify these
computations; it’s good practice!)

The point of this change of coordinates was to “decouple” the two parts of the Hamiltonian.
The coordinateQ is called the center ofmassof the system;whatwe’ve shown is that our original
system is equivalent to one with a free particle of mass𝑀 moving with the center of mass and a
particle of mass𝑚 moving under the influence of the potential𝑉 .

2.5.3 Central Potentials
As one more example of the relationship between symmetries and conservation laws, let’s
consider a particle moving in a potential that depends only on the distance of that particle from
the origin. That is,

𝐻 =
|p|2
2𝑚 +𝑉 ( |q|).

This is a good model for a planet moving around the sun under the influence of Newtonian
gravity; in this case we’ll have𝑉 (𝑟 ) = −𝐺𝑀𝑚/𝑟 , where𝑀 is the mass of the sun and𝐺 is the
gravitational constant.

But no matter what𝑉 is, the fact that it depends only on the length of qmeans that the
physics is preserved by any rotation about the origin. It’s worth being precise about what we



Section 2 HamiltonianMechanics 10

mean by this: rotation about the origin is a diffeomorphism on configuration space, and to
extend it to a symplectomorphism on phase space we need to take its cotangent lift.

If 𝑅𝜃 is the rotation by 𝜃 around the 𝑧 axis, then

(𝑅𝜃 )♯ (𝑥, 𝑦 , 𝑧,𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 ) = ( cos 𝜃𝑥 − sin 𝜃𝑦 , sin 𝜃𝑥 + cos 𝜃𝑦 , 𝑧, (1)
cos 𝜃𝑝𝑥 − sin 𝜃𝑝𝑦 , sin 𝜃𝑝𝑥 + cos 𝜃𝑝𝑦 , 𝑝𝑧 ). (2)

(The transpose of the inverse of𝑅𝜃 is just 𝑅𝜃 itself, since 𝑅𝜃 is orthogonal.) This is themap that
has to preserve the Hamiltonian if our analysis is to go through, which means it’s important
that𝐻 depends only on |p| and |q|.

To get the vector field whose flow produces this symmetry, we take the derivative of this with
respect to 𝜃 at 𝜃 = 0. We get

𝑋 = −𝑦𝜕𝑥 + 𝑥𝜕𝑦 − 𝑝𝑦𝜕𝑝𝑥 + 𝑝𝑥𝜕𝑝𝑦 ,

which is 𝑋𝐿𝑧 where 𝐿𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥 .
We call 𝐿𝑧 the angularmomentum of our particle about the 𝑧 axis, and this analysis shows

that any physics arising from aHamiltonian which is symmetric under rotations about the 𝑧
axis.

2.5.4 A Note
It is easy to construct Hamiltonians which aren’t invariant under rotations or translations.
Indeed, the one from the last example isn’t preserved by translations, and correspondingly
we shouldn’t expect momentum to be conserved by, say, Newtonian gravity. Nonetheless, it’s
believed bymost physicists that the fundamental laws that the universe runs on, whatever they
are, do have these two symmetries — the results of a physical experiment don’t depend on
where you do it or which way you were facing— and that therefore conservation of linear and
angular momentum hold in general.

If you are presented with a Hamiltonian that doesn’t have this symmetry, like the one in the
last example, the assumption is that there’s some part of the physics that you’re neglecting, and
that if you included it the symmetry would appear again. For example, if we imagine the last
example to be about a planet moving around the sun, we are neglecting the influence of the
planet’s gravity on the sun, and if we included it we would be in the situation from the previous
example about the two-body problem.

There is another symmetry that classical physics obeys: it also shouldn’t matterwhen an
experiment is performed. Under our formalism, time translation comes from flowing along the
vector field given by𝐻 itself, so this symmetry corresponds to the conservation of energy. This
example is a bit different from the others, though, because the relationship is true by definition!
This is an artifact of the way we set up the Hamiltonian formalism: it picks out time translation
as “special,” as the flow that corresponds to the Hamiltonian, and specifying the Hamiltonian is
the way we specify the laws of physics.

Like with momentum, it is possible to “break” the time translation symmetry (and therefore
energy conservation) by using a Hamiltonian that depends explicitly on time. This is useful
when the forces acting on the particles or the constraints of the physical system change over
time. (An example of the latter that’s often trotted out in physics classes is a bead attached to a
spinning circle of wire.) I’ve chosen not to consider the case of time-dependent Hamiltonians
or Lagrangians in this article for simplicity, but the theory does continue to work just fine in
that setting.
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3 LagrangianMechanics
Recall that Hamilton’s equations are given by

𝑑𝑞𝑖

𝑑𝑡
=

𝜕𝐻

𝜕𝑝𝑖
,

𝑑𝑝𝑖

𝑑𝑡
= −𝜕𝐻

𝜕𝑞𝑖
.

As I mentioned briefly in that section, the first equation can give us a sort of answer to the
questionwe had earlier about the relationship betweenmomentumand velocity: it supplies, for
every point (𝑞,𝑝) ∈ 𝑇 ∗𝑄 a tangent vector𝑣 ∈ 𝑇𝑞𝑄 , and it tells us to interpret that tangent vector
as a velocity. Provided that this procedure is invertible, which it will be in all of the cases we
care about, we can think of it as giving us a “change of coordinates” from the cotangent bundle
to the tangent bundle. This will turn out to give us another formulation of mechanics, called
Lagrangianmechanics, which, while formally equivalent to everything we’ve done so far, sheds
light on different aspects of mechanics than the Hamiltonian picture.

3.1 The Legendre Transform
We’ll take this assignment of tangent vectors to points in phase space as our starting point. If the
tangent vector 𝑣 comes from (𝑞,𝑝) in this way, our goal will be to rewrite Hamilton’s equations
in a way that depends on 𝑞 and 𝑣 rather than on 𝑞 and 𝑝 . Put another way, the Hamiltonian
gave us a way to turn paths in the cotangent bundle into paths in the tangent bundle, and we’d
like to see what restrictions Hamilton’s equations impose directly on these new paths.

Hamilton’s first equation was, in some sense, “used up already” in the definition of 𝑣 . By
switching coordinates to 𝑣 and interpreting 𝑣 as a velocity, this equation tells us simply that
𝑣 = 𝑑𝑞/𝑑𝑡 , that is, at every point (𝑞,𝑣 ) = 𝛾 (𝑡 ) along our path, we should have 𝑣 = 𝛾 ′ (𝑡 ). This
means that wemight as well just talk about paths in configuration space rather than its tangent
bundle; we can identify such a path with its lift to the tangent bundle and do away with one of
our two equations.

So it remains to translate the second equation into something to do with 𝑣 . Note that the 𝑞
coordinate has very little to do with our goal here: we’re trying to turn a statement about the
cotangent bundle into a statement about the tangent bundle, and all of the action is happening
in the fibers of these two bundles. So it will be cleaner to ignore 𝑞 for now and examine how our
coordinate change procedure behaves on a general vector space.

Suppose we have a smooth function 𝐻 on a vector space 𝑈 . (𝑈 will end up being the
cotangent space at a point of configuration space.) Then for each point 𝑝 ∈ 𝑈 , 𝑑𝐻 gives a
linear map from the tangent space𝑇𝑝𝑈 toR. But since𝑈 is a vector space, there is a canonical
identification of each of its tangent spaces with𝑈 itself, so we can in fact think of 𝑑𝐻 as giving
us a way of assigning, to each𝑝 ∈ 𝑈 , a linear map from𝑈 toR, that is, an element of𝑈 ∗.

So𝐻 gives us amap𝑊𝐻 :𝑈 →𝑈 ∗. (It’s important to emphasize that𝑊𝐻 has no reason to
be linear, so this is not any sort of inner product.) Geometrically,𝑊𝐻 takes𝑝 to the element of
𝑈 ∗ corresponding to the linear part of the linear approximation to𝐻 at𝑝 .

Suppose now that𝑊𝐻 is invertible. (This will happen, for example, if𝐻 is a constant plus a
nondegenerate quadratic form in𝑝 , as is the case for ourmechanical Hamiltonians from the
last section.) Then it turns out that𝑊 −1

𝐻
arises in the same way as𝑊𝐻 : there is a function 𝐿 so

that𝑊𝐿 =𝑊 −1
𝐻

. We call 𝐿 the Legendre transform of𝐻 .
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In fact, 𝐿 can be computed explicitly: one can show that when𝑊𝐻 is invertible,𝑊𝐿 =𝑊 −1
𝐻

if
and only if

𝐿 (𝑊𝐻 (𝑝)) +𝐻 (𝑝) = ⟨𝑊𝐻 (𝑝), 𝑝⟩
up to an additive constant, where ⟨·, ·⟩ is the pairing between𝑈 ∗ and𝑈 . (Usually we let the
constant be zero.) In particular, this makes it clear that the Legendre transform is an involution:
𝐻 is also the Legendre transform of 𝐿 .

To see all this, first note that by definition, for any𝑝 ∈ 𝑈 , we have ⟨𝑊𝐻 (𝑝), 𝑝 ′⟩ = 𝑑𝐻𝑝 (𝑝 ′),
where on the right hand side we think of 𝑝 ′ as living in the tangent space at 𝑝 . So, taking the
derivative of both sides and pairing with an arbitrary𝑝 ′, we get that they are equal if and only if

⟨(𝐷𝑊𝐻 )𝑝 (𝑝 ′),𝑊𝐿 (𝑊𝐻 (𝑝))⟩ = ⟨(𝐷𝑊𝐻 )𝑝 (𝑝 ′), 𝑝⟩,

where (𝐷𝑊𝐻 )𝑝 is the total derivative of𝑊𝐻 at𝑝 . Since𝑊𝐻 is invertible, the left side of this pairing
can be anything, so this is true if and only if𝑊𝐿 (𝑊𝐻 (𝑝)) = 𝑝 . The reader is encouraged to fill in
themissing steps of this argument; it’s a good exercise in following all the relevant definitions.

So what did this giant mess of symbols get us? To any function𝐻 on𝑈 we’ve associated a
new function 𝐿 on𝑈 ∗ so that their “coordinate-change functions” are inverses of each other. In
coordinates𝑝1, . . . , 𝑝𝑛 on𝑈 and 𝑣1, . . . , 𝑣𝑛 on𝑈 ∗, this means that

𝑣𝑖 =
𝜕𝐻

𝜕𝑝𝑖
, 𝑝𝑖 =

𝜕𝐿

𝜕𝑣𝑖
,

and
𝐿 = ⟨𝑣,𝑝⟩ −𝐻 .

In the case we’re interested in, when we’re doing this in every fiber of the cotangent bundle and
𝐻 is the Hamiltonian of some physical system, we call 𝐿 the Lagrangian of that same system.

What does this look like for the mechanical Hamiltonians we were working with before?
Therewe had𝐻 = 𝑇 +𝑉 =

∑
𝑖
|p𝑖 |2
2𝑚𝑖

+𝑉 (𝑞). Sowe get v𝑖 = 𝜕𝐻 /𝜕p𝑖 = p𝑖/𝑚𝑖 and ⟨𝑣,𝑝⟩ =
∑

𝑖
|p𝑖 |2
𝑚𝑖

=

2𝑇 . This means the Lagrangian turns out to be 𝐿 = 2𝑇 − (𝑇 +𝑉 ) = 𝑇 −𝑉 .
It’s worth stressing again that despite the fact that we’ve arrived at an expression for 𝐿 that

looks very similar to𝐻 , there is an additional important difference between the two aside from
the fact that the sign on𝑉 has flipped: 𝐻 is a function on the cotangent bundle and 𝐿 is a
function on the tangent bundle! The relationship betweenmomenta and velocities— that is,
between𝑝 and 𝑣 —depends entirely on the physics beingmodeled, so unless you’ve picked a
Hamiltonian or a Lagrangian this relationship remains unspecified. Only when this relationship
has been established does it evenmake sense to write something like 𝐿 +𝐻 = 2𝑇 ; if we were
beingmore careful we would actually write something like 𝐿 (𝑞,𝑊𝐻 (𝑝)) +𝐻 (𝑞,𝑝) = 2𝑇 (𝑝).

Recall that Hamilton’s first equation now just tells that the tangent vector we pick at every
point of our path should be the time derivative of the path at that point, so we are just left with
translating the second into a statement about Lagrangians. That equation was

𝑑𝑝𝑖

𝑑𝑡
= −𝜕𝐻

𝜕𝑞𝑖
.

Now, since we performed our Legendre transform just in the fibers of the cotangent and tangent
bundles, nothing interesting happened to derivatives with respect to 𝑞 coordinates, so the fact
that𝐿 = ⟨𝑣,𝑝⟩−𝐻 means that 𝜕𝐿/𝜕𝑞𝑖 = −𝜕𝐻 /𝜕𝑞𝑖 . This, combinedwith the fact that𝑝𝑖 = 𝜕𝐿/𝜕𝑣𝑖
gives us Lagrange’s equation:

𝑑

𝑑𝑡

(
𝜕𝐿

𝜕𝑣𝑖

)
=

𝜕𝐿

𝜕𝑞𝑖
.
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It ismorecommon for authors towrite ¤𝑞𝑖 where I’vewritten𝑣𝑖 here, using theusualphysicists’
conventionofdots to indicate timederivatives. The reason Ididn’tdo thiswas toavoidacommon
confusion: when you write expressions like 𝜕𝐿/𝜕 ¤𝑞𝑖 it’s tempting to assume that one is supposed
to compute ¤𝑞𝑖 from𝑞𝑖 or something. But the Lagrangian is a function on the tangent bundle, not
just on configuration space, and 𝜕𝐿/𝜕𝑣𝑖 is just a derivativewith respect to one of the coordinates
on the tangent bundle. Given a smooth path in configuration space there is a natural way to lift
it and obtain a path in the tangent bundle, and the physical assumption we aremaking is that
the paths that happen physically are exactly the ones whose lifts satisfy Lagrange’s equation.

Note that we end upwith half asmany equations as before—we have one for every position
coordinate, rather than one for every position or momentum coordinate. But because the
Lagrangian depends on both 𝑞 and 𝑣 and we fix 𝑣𝑖 to be the time derivative of 𝑞𝑖 , these end up
being second-order differential equations rather than the first-order Hamilton’s equations, so
we still need the same amount of information in our initial conditions to solve them as before.

3.2 An Example
Let’s look at a concrete example of an at least somewhat nontrivial mechanics problem and see
how to solve it using the Lagrangian formalism. This problem still would be feasible to tackle
using the techniques from aNewtonianmechanics class, but the Lagrangian approachmakes it
quite straightforward.

Consider a two-dimensional world with a mass hanging from a very light spring. The end of
the spring without the mass is fixed in place and the other end is free to swing around. We’ll
pick coordinates 𝑟 , 𝜃 for our configuration space, where 𝑟 is the current length of the spring and
𝜃 is the angle the springmakes with the vertical. We’ll write the corresponding time derivatives
as 𝑣𝑟 and 𝑣𝜃 . These coordinates have the nice property that their time derivatives are always
perpendicular, so the speed of the particle is

√︁
𝑣2𝑟 + (𝑟𝑣𝜃 )2. Therefore, the kinetic energy is

simply𝑇 = 1
2𝑚𝑣2𝑟 + 1

2𝑚𝑟 2𝑣2
𝜃
.

There are two contributions to the potential energy: gravity and the restoring force from the
spring. Springs arewellmodeled by potentials of the form𝑉spring =

1
2𝑘 (𝑟 − ℓ)2 for some constant

𝑘 , where ℓ is the “natural length” of the spring. We encountered a potential of this formwhen
we discussed the harmonic oscillator. Gravity (at least in cases like this where we can neglect the
varying distances from the center of the earth) produces a constant acceleration in all falling
bodies, and I encourage you to check that this is the same as asserting that𝑉gravity = 𝑚𝑔ℎ where
𝑔 is that constant acceleration and ℎ is the height of a particle above an arbitrary reference
height.

Putting this all together, we get

𝐿 =
1
2𝑚 (𝑣2𝑟 + 𝑟 2𝑣2𝜃 ) −

1
2𝑘 (𝑟 − ℓ)2 +𝑚𝑔𝑟 cos 𝜃 .

We can plug this into Lagrange’s equation and get, simplifying a bit and using physicists’ dot
notation for derivatives,

𝑚 ¥𝑟 = 𝑚𝑟 ¤𝜃 2 +𝑚𝑔 cos 𝜃 − 𝑘 (𝑟 − ℓ)

and
𝑚𝑟 ¥𝜃 + 2𝑚 ¤𝑟 ¤𝜃 = −𝑚𝑔𝑟 sin 𝜃 .
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3.3 The Calculus of Variations
There is another, very different way to obtain the Lagrange’s equation involving a technique
called the calculus of variations. The calculus of variations is a sort of infinite-dimensional
calculus performed on spaces of functions rather than finite-dimensional vector spaces. It
provides tools for doing things like finding local minima or maxima of some functional on such
a space of functions. I’ll sketch the part of this story that produces Lagrangianmechanics.

Suppose we are given an arbitrary function 𝐿 : R ×𝑇𝑄 → R, where we think of the firstR
as representing a time coordinate. Given any path𝛾 : [0, 1] → 𝑄 , we consider the following
quantity, called the action:

𝑆 (𝛾 ) =
∫ 1

0
𝐿 (𝑡 ,𝛾 (𝑡 ),𝛾 ′ (𝑡 ))𝑑𝑡 .

(Here again 𝑡 ↦→ (𝛾 (𝑡 ),𝛾 ′ (𝑡 )) is the natural lift of𝛾 to a path in the tangent bundle of𝑄 ; we are
abusing notation slightly writing the components the way we are here.) We want to find, out of
all paths𝛾 with a fixed starting and ending point, the ones that locally minimize or maximize 𝑆 .

We’ll answer this by considering smooth homotopies ℎ : (−𝜖, 𝜖) × [0, 1] → 𝑄 for which
ℎ (0, 𝑡 ) = 𝛾 (𝑡 ) and which leave the endpoints fixed. As usual, we’ll write ℎ𝑢 (𝑡 ) = ℎ (𝑢, 𝑡 ) If
𝛾 minimizes the action, then it ought to in particular be a local minimum within any such
homotopy. That is, 0 should be a critical point of the function𝑢 ↦→ 𝑆 (ℎ𝑢 ).

For ease of notation from here on out, I’ll write𝛾 (𝑡 ) = (𝑡 ,𝛾 (𝑡 ),𝛾 ′ (𝑡 )) for the argument to 𝑆 ,
so 𝑆 (𝛾 ) =

∫ 1
0 𝐿 (𝛾 (𝑡 ))𝑑𝑡 .

So we need
𝑑

𝑑𝑢

����
𝑢=0

∫ 1

0
𝐿

(
𝑡 , ℎ (𝑢, 𝑡 ), 𝜕ℎ

𝜕𝑡
(𝑢, 𝑡 )

)
𝑑𝑡 = 0,

and we can turn this into a condition which doesn’t mention ℎ with a bit of computation. We
can pull the derivative inside the integral sign and use the chain rule to get that the left side is∫ 1

0

𝑛∑︁
𝑖=1

[
𝜕ℎ𝑖

𝜕𝑢
(0, 𝑡 ) 𝜕𝐿

𝜕𝑞𝑖
(𝛾 (𝑡 )) + 𝜕2ℎ𝑖

𝜕𝑢𝜕𝑡
(0, 𝑡 ) 𝜕𝐿

𝜕𝑣𝑖
(𝛾 (𝑡 ))

]
𝑑𝑡

for any coordinate system (𝑞1, . . . , 𝑞𝑛 , 𝑣1, . . . , 𝑣𝑛) on the tangent bundle; hereℎ𝑖 is the 𝑞𝑖 com-
ponent of ℎ. Then, using integration by parts, we can transform the second term a bit more,
turning it into:

𝑛∑︁
𝑖=1

[ (
𝜕ℎ𝑖

𝜕𝑢
(0, 𝑡 ) 𝜕𝐿

𝜕𝑣𝑖
(𝛾 (𝑡 ))

)����1
𝑡=0

−
∫ 1

0

𝜕ℎ𝑖

𝜕𝑢
(0, 𝑡 ) 𝑑

𝑑𝑡

(
𝜕𝐿

𝜕𝑣𝑖
(𝛾 (𝑡 ))

)
𝑑𝑡

]
.

The fact that the endpoints are fixedmeans that the boundary term on the left is zero: at 𝑡 = 0
and 𝑡 = 1,ℎ𝑢 (𝑡 ) doesn’t vary as I change𝑢 , so 𝜕ℎ/𝜕𝑢 = 0. So we’re left with just the second term
which we combine with themissing term above to get that we want∫ 1

0

𝑛∑︁
𝑖=1

𝜕ℎ𝑖

𝜕𝑢
(0, 𝑡 )

[
𝜕𝐿

𝜕𝑞𝑖
(𝛾 (𝑡 )) − 𝑑

𝑑𝑡

(
𝜕𝐿

𝜕𝑣𝑖
(𝛾 (𝑡 ))

)]
𝑑𝑡 = 0.

Finally, we note that, since 𝜕ℎ/𝜕𝑢 could be any vector at all at each 𝑡 , the only way that
integral is zero for every ℎ is if, for each 𝑖 , the part in square brackets is identically zero as a
function of 𝑡 . But that is exactly the same as saying that𝛾 must satisfy Lagrange’s equation!
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So we get a description of the laws of physics that looksmuchmore “global” than the one
from symplectic geometry above: a physical system gets from one point in configuration space
to another by following a path that is a critical point of the action functional 𝑆 . The original
description told us how the position andmomentum (or velocity) evolve through time if we
know them at onemoment, whereas this new description puts a restriction on the entire path
at once. We’ll havemore to say about this in the next section.

4 A Little Philosophy
The first time I encountered Noether’s theorem gave me a particular feeling about physics
that I’ll do my best to explain here. There is a sense in which, for example, the fact that the
laws of physics are invariant under rotation is “obvious” and fact that they conserve angular
momentum isn’t. After all, an expression like 𝐿𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥 looks a little arbitrary. Why should
it be a fundamental of nature that that’s conserved rather than, say, 𝑥𝑝𝑦 + 𝑦𝑝𝑥 ?

Now that we’ve built up themachinery that connects rotation and angular momentum, it’s
very tempting to say that we’ve “reduced” the fact that angular momentum is conserved to
“merely” the fact that physics is rotationally symmetric. This is, of course, not true: we have
reduced it to the fact that physics is rotationally symmetric and the fact that physics can be
described using Hamiltonianmechanics. (There is of course a Lagrangian version of Noether’s
theorem too, and in fact this is the form in which it was originally stated.) Indeed, trying to
prove Noether’s theorem fromHamiltonianmechanics gets things a bit backwards: the fact that
something like Noether’s theorem is true is baked into the fact that all the flows we consider are
along Hamiltonian vector fields.

This is emphatically a physical and not amathematical assertion— it is certainly possible
to imagine a universe where physics doesn’t work this way, but this does not seem to be the
universe we live in. We can’t hope to prove that conservation of angular momentum is “the only
way it could logically have been” without making some assumptions about the nature of the
laws of physics. What we can do, and what in some sense is themain goal of all of physics, is to
try to find a way to state those laws with as fewmoving parts as possible, and I think that at least
is something that this whole discussionmanages to do. In either math or physics, any time you
can take an arbitrary-looking algebraic expression and show that it falls out naturally from less
arbitrary-lookingmathematical objects you’vemade some progress towardmaking the world
more intelligible.

This is partly why I took the particular path through thematerial that I did. It’s actuallymuch
more common inmechanics texts to do the Lagrangian version first and derive theHamiltonian
picture from it using a Legendre transform. I always had some trouble making this approach fit
inmy head without seeming likemagic. Until you’ve seen how it fits into the story it’s unclear
why the Lagrangian has anything to do with anything, and especially unclear why one would
want tominimize the action. Even if, as I keep saying, it’s necessary tomake up some physical
assumption at some point to make this all go, I feel like the assumptions made here feel at least
a little less made up; the reader is of course free to disagree.

As I sort of said when discussing it above, it isn’t quite as “magical” as it might first appear—
the claim is not that the universe searches over all possible paths for the global minimum of the
action, but rather that the one that occurs is a critical point of the action under any perturbation.
Sometimes a path with this property is called “stationary.” So the rule is not quite as global
as it might be— it is global in the sense of pertaining to the whole path at once rather than a
particular point along it, but not in the sense of pertaining to all possible paths, even those far
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away from the one under consideration.
Still, it was very striking to people in the early 19th century that Newtonianmechanics could

be recast in such a strange way, and I think this reactionmakes a lot of sense. The fact that the
action-principle version is mathematically equivalent to themore local description shouldn’t
detract from this; even in puremathematics one can often learn a great deal from expressing the
same fact in two different ways. A lot of this work happened around the end of the 18th century,
and, in keeping with the Enlightenment-era times, many authors took the action principle as
evidence of the benevolent guiding hand of Naturemaking sure the particles don’t waste too
much of their precious action on frivolous non-stationary paths or something.

This is, of course, not the waymost modern physicists talk, but there is a different sense in
which we now understand the story told in this article to be offering us a hint about something
beyondNewtonianmechanics. Basically all the theories ofmodern physics, including quantum
mechanics, quantum field theory, general relativity, andmore speculative extensions to them
like string theory, aremost naturally expressed not in terms of forces and equal and opposite
reactions but in terms of Lagrangians and Hamiltonians.


	Introduction
	Hamiltonian Mechanics
	The Newtonian Setup
	Configuration Space and Phase Space
	Symplectic Geometry
	Phase Space and Hamiltonians
	Examples
	The Harmonic Oscillator
	The Two-Body Problem
	Central Potentials
	A Note


	Lagrangian Mechanics
	The Legendre Transform
	An Example
	The Calculus of Variations

	A Little Philosophy

