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Quantum Field Theory I - Free Fields
Nic Ford

1 Introduction
This article is part of a series on physics for mathematicians, and the start of what I imagine
will be a three- or four-article sequence on quantum field theory. This topic is, in some sense,
themain reason I started the broader physics series in the first place. Learning quantum field
theory is a project I’ve been engaged in off and on for years, and a lot of the rest of the series was
written, at least in part, to serve as sort of prerequisites for it. It took a very long time for me to
get my own understanding of quantum field theory up to a point where I felt like I could write
about it for this series, and I’m excited to get started.

Quantum field theory has a reputation for being very difficult to learn, and based on my
experience I would say that reputation is deserved. Even when compared to ordinary quantum
mechanics, the relationshipbetween the formalismand thephysicalworld canbepretty opaque;
when I first started learning the topic I would constantly be asking questions like “how are we
supposed to interpret the points in this Hilbert space” and “which state is supposed to be the
one-particle state,” and I found it very difficult to get clear answers. More than anything else,
what I want to do with this series is to try to explain the answers to questions like these in a way
that I would have found helpful to me when I was starting out.

As we will mentionmany, many times in this series, quantum field theory presents a lot of
mathematical difficulties, to the point that no one has yet managed to construct a quantum
field theory that is both completely rigorous and physically realistic. (One of theMillennium
Problems amounts to finding a completely rigorous treatment that accounts for just one feature
of the Standard Model.) In this series, I have not been too concerned with filling in all the
formal details involved in building a mathematically rigorous models of physics. There are
other sources that do that much better than I could, and also I think that when you are learning
a physical concept for the first time it’s better to get a sense of how themodel is “supposed to
work” before worrying about how to prove everything. But quantum field theory presents the
additional difficulty that, for themost part, this rigorousmodel doesn’t exist at all; the physicists’
plausibility arguments and cavalier attitude toward divergent quantities are actually all we have.

There is a lot to say about how far we can get rigorously and what the precise nature of the
difficulty is, but in attempting to understand this material myself I’ve concluded that it’s not
worth diving into these questions until one understands, on an informal level, what kind of
object we are actually attempting to construct. To that end, we’ll start by going through an
example in whichmost of themathematical issues won’t get in our way, and sowewill be able to
focus on understanding on amore intuitive level what all the objects are andwhat their physical
significance is supposed to be.

The prerequisites for understanding this piece are necessarily broader than some of the
earlier articles in this series. You should have a good understanding of ordinary, nonrelativistic
quantummechanics, as well as special relativity. It might also be helpful, especially for the later
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articles in the quantum field theory sequence, to have some understanding of how to describe
classical field theories in terms of a Lagrangian. This is done to some extent in the first half of
the article in this series on classical electromagnetism, but not quite in the form that would be
most useful for this piece. I maymake a supplement on this at some point, but also I will do
my best to explain what from that group of ideas is necessary in eachmoment to follow what is
going on.

I’ve gotten in the habit of ending the introductory section of each of these articles with a list
of books I found useful when learning the topic at hand. Because of howmuch time I’ve spent
reading quantum field theory books, I think it would be best to break that off into a separate
“bibliography” article rather than list them all here. For now, I will mention that a lot of the story
we are going to tell in this article is explained very well in Chapter 5 of Gerald Folland’s book
Quantum Field Theory: A Tourist Guide forMathematicians. That chapter is a great place to look
if you would like amore careful and rigorous treatment than the one you’re about to read here.

I am grateful to Harry Altman, Grant Sanderson, JordanWatkins, andMithuna Yoganathan
for looking over earlier versions of this article.

Notation and Conventions
Throughout this article, we’ll use a calligraphicH to represent the Hilbert space that the states
of a quantum theory live in. We’ll use the physicists’ convention ⟨𝜓 ′ |𝜓⟩ to denote the inner
product onH , and we’ll also often use the “ket” notation |𝜓⟩ to refer to individual elements of
H . Whenever there is an observable that we want to discuss in both its classical and quantum
versions, we’ll use a hat to denote the quantum version. For example𝐻 will be the classical
Hamiltonian while𝐻 will be the quantumHamiltonian. We’ll follow the physicists’ convention
of writing𝑂† for the adjoint of an operator𝑂 .

We’ll have occasion to think about quantum states and operators in both the Schrödinger
picture, where the states depend on time and the operators don’t, and theHeisenberg picture,
where it’s the other way around. As a reminder, in the Schrödinger picture, states evolve in
time according to |𝜓 (𝑡 )⟩ = 𝑒 −𝑖𝑡𝐻 |𝜓 (0)⟩; in the Heisenberg picture, operators evolve in time
according to𝑂 (𝑡 ) = 𝑒 𝑖𝑡𝐻𝑂 (0)𝑒 −𝑖𝑡𝐻 .

The theory we will be considering in our running example is relativistic, whichmeans we
need to set some conventions for themathematical objects arising from special relativity. We’ll
use the symbol · for both the Euclidean inner product onR3 and the Lorentzian inner product
onR4. We’ll use the “mostly minus” convention for the inner product onR4, where

(𝑡 , 𝑥, 𝑦 , 𝑧) · (𝑡 ′, 𝑥 ′, 𝑦 ′, 𝑧 ′) = 𝑡𝑡 ′ − 𝑥𝑥 ′ − 𝑦𝑦 ′ − 𝑧𝑧 ′.

For x ∈ R3 we will write |x |2 = x · x, but for 𝑥 ∈ R4, we’ll write 𝑥2 = 𝑥 · 𝑥 , where the lack of
absolute value signs serves as a reminder that this quantity can be negative.

Wewill follow the common convention of using boldface letters for vectors inR3 andnormal
italic letters for scalars or for vectors in R4; in particular, we will sometimes write 𝑥 = (𝑡 , x)
for 𝑥 ∈ R4, 𝑡 ∈ R, and x ∈ R3. We’ll use the convention, somewhat more common among
physicists thanmathematicians, of writing

∫
𝑑3x𝑓 (x) for integrals overR3 and

∫
𝑑4𝑥 𝑓 (𝑥) for

integrals overR4.
The conventions we’ve already described entail choosing units where 𝑐 = ℏ = 1; we’ll do this

throughout.
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2 What is a Quantum Field Theory, Vaguely
Before starting on our central example, it’s worth briefly discussing, on a high level, what it
is that we’re trying to do when we set out to build a quantum field theory. The discussion in
this section is going to be vague and qualitative; we will make each of these points muchmore
precise in the context of our example.

The transition from quantummechanics to quantum field theory requires amuch smaller
conceptual leap than the transition from classical to quantummechanics. At least conceptually
—whether or not this program can be carried out rigorously is a separate question—most of
the basic structure carries over more or less unchanged: the states of a system are represented
by nonzero vectors in a separable Hilbert spaceH (up to a scalar multiple) and observables are
represented by self-adjoint operators onH . Just as in quantummechanics, we can describe the
laws of physics either with the “canonical” framework, where we pick a Hamiltonian and use it
to construct time translation operators, or with the path integral framework, where we instead
start from a Lagrangian.

The thing that makes it a quantum field theory is that the physical systemwe are attempting
to quantize is, well, a field theory. In ordinary quantummechanics, we usually look at systems
with finitely many degrees of freedom, like the three coordinates of a particle. (The Hilbert
space that we construct when we quantize the theorymight still be infinite-dimensional, but
the classical theory that we’re quantizing has a finite-dimensional state space.) In a field theory,
the degrees of freedom are indexed by a continuous variable, even in the classical setting.

There are a couple of reasons onemight want to do this. The first is quite straightforward:
there are a lot of classical physical phenomena, most prominently electromagnetism, which are
best described in terms of fields, and it seems sensible to want a quantum version of them. The
second is a bit subtler, but also quite important. Special relativity famously forbids any situation
where a signal can travel faster than light. The quantum version of this restriction ought then to
imply that measurements performed at two points 𝑥 and 𝑦 in spacetime ought not to interfere
with each other if no slower-than-light signal could get from 𝑥 to 𝑦 , that is, if the vector 𝑥 − 𝑦 is
spacelike. In order to formalize this restriction, we need some way to say which observables—
in the form of self-adjoint operators on the Hilbert space— “take place at” a particular point 𝑥 .
This alone ought to encourage us to try to cast as many physical situations as possible in terms
of fields; after all, a field is precisely composed of an association between points in spacetime
and observable quantities.

Just as each position coordinate in ordinary quantummechanics gives rise to a different
observable, we will need an observable for the value of the field at every point in spacetime.
In the example we are about to consider, we will be looking at a real scalar field, which in the
classical setting amounts to a real-valued function 𝜙 on R3 which changes over time. At a
givenmoment in time, specifying the state amounts to specifying the value of 𝜙 at each point
x in space (as well as its time derivative, because the equation of motion will be given by a
second-order differential equation). Therefore, in the quantum version of this theory, we will
want an observable 𝜙 (x) for each point x ∈ R3, which will correspond to the question “what is
the value of the field 𝜙 at the point x right now?”

Inordinaryquantummechanics, when the states of the classical systemcorrespond topoints
in someR𝑁 , it’s common to useL2 (R𝑁 ) as the Hilbert space for the quantum version of the
system. It’s natural to imagine doing something similar for a quantum field theory, where rather
than assigning a complex number to each point inR𝑁 , we would assign a complex number to
each field configuration, that is, to each function 𝜙 : R3 → R. This object is sometimes called a
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wavefunctional; our Hilbert spacemight then consist of all wavefunctionals which areL2 with
respect to some suitably chosenmeasure on the space of field configurations 𝜙 .

This can be a decent model to hold onto if you would like a more concrete mental picture of
what the states in a quantumfield theory represent, but it’s not the standard approach. This is for
a couple of reasons. First, while it might seem like themost direct way to build a state space for a
quantumfield, actually constructing the space of wavefunctionals rigorously is very analytically
tricky, and, like all approaches to formalizing quantum field theory, tomy knowledge it can only
bemade to work in the case of a free field. Second, even if it could be constructed (which, after
all, physicists are happy to assume whether or not mathematicians agree), it isn’t an especially
useful perspective for actually computing anything physical. The states that correspond to
particles colliding with each other— that is, the states that correspond to experiments we can
actually run—arenotusefully described in termsof assigning amplitudes tofield configurations.
Additionally, all the field theories we’re going to look at will respect the symmetries of special
relativity, and it is difficult to describe the action of Lorentz boosts in terms of wavefunctionals
as well.

All this means that the wavefunctional approach is basically never used by physicists, and
we will go along with them in not emphasizing it here. If you’d like a wavefunctional-oriented
exposition from a nonrigorous perspective, there is a paper by Roman Jackiw called “Analysis
on infinite-dimensional manifolds: Schrödinger representation for quantized fields,” and it is
also covered in Chapter 10 of the bookQuantum Field Theory of Point Particles and Strings by
Brian Hatfield.

Instead, especially in the interacting theories that we will consider after the example pre-
sented in this article, we will treat the Hilbert spacemuchmore abstractly. We will care about
the existence of certain operators on it, their commutation relations, and their relationship to a
few special states in the Hilbert space, but we will never care how any individual state might
be represented as a wavefunctional. If we canmanage to construct a Hilbert space and some
operators on it with the right properties, we will consider ourselves to have successfully built
ourselves a quantum field theory, even if it is difficult to interpret the states directly in terms of
field configurations.

3 The Klein–Gordon Field
As we said in the introduction, most of this article will involve going through one example in
detail. The example we’ll use is also the one that a lot of textbooks choose to start with: that of a
free real massive scalar field (themeaning of all of these adjectives should be apparent soon).
As the name “free” suggests, nothing all that physically interesting happens in the theory we’re
about to construct.

Nevertheless, this construction isnice togo through for two reasons. First, unlike forbasically
any physically realistic quantum field theory, in the free case it’s possible to actually construct
the Hilbert space and all the relevant operators rigorously and solve all the resulting equations
analytically, which shouldmake it easier to understand what role all the pieces play. Second,
because we won’t be able to solve anything analytically in the so-called “interacting” case, a lot
of our analysis there will come from viewing it as a small perturbation of the free case, where we
expand the relevant quantities as apower series in someparameter𝜆 inwhich𝜆 = 0 corresponds
to the free theory. It will therefore be very useful to understand the free theory even if you’re only
interested in the interacting theory, since it will form the center of this power series expansion.

We’ll start by saying a bit about the classical field theory we’ll be quantizing. We’ll say that a
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function 𝜙 : R4 → R is a Klein–Gordon field if it satisfies theKlein–Gordon equation:

(𝜕2 +𝑚2)𝜙 = 0,

where 𝜕2 = 𝜕2𝑡 − 𝜕2𝑥 − 𝜕2𝑦 − 𝜕2𝑧 . The fact that 𝜙 takes values in R is what makes it a real scalar
field, and the𝑚2𝜙 term is whatmakes itmassive—wewill see once we have finished the whole
derivation that𝑚 will be themass of a particle.

It’s important to remember at the outset that we’re thinking of 𝜙 as a classical field. It is not
in any sense a wavefunction—nothing quantum has happened yet! It might help instead to
imagine it as a simplified version of the (classical) electromagnetic field, where the field takes
scalar rather than vector values and where the differential equation has an extra𝑚2𝜙 term on
the end. A good mental picture should be that there is a real number associated with every
point in space and these numbers change as we run time forward. Because the Klein–Gordon
equation is a second-order differential equation, the entire history of the field is determined if
we specify 𝜙 and 𝜕𝑡𝜙 on a “time slice” inR4, for example the set of points for which 𝑡 = 0.

One nice feature of the Klein–Gordon equation is that it’s Lorentz-invariant: if𝜙 is a solution,
then so is any translation, rotation, or Lorentz boost of 𝜙 . Unfortunately, because we are about
to quantize this theory, we’re going to have to describe the physics in terms of a Hamiltonian,
which basically requires us to break the Lorentz symmetry, since the entire machinery of Hamil-
tonianmechanics requires us to choose a forward time direction in which to evolve our states.
(Equivalently, we could say the symmetry is broken by the fact that the Hamiltonian represents
energy, which is the time component of energy-momentum.) For now, this is unavoidable; we’ll
see how the Lorentz symmetry reemerges at the end.

What would it mean to quantize this theory? Suppose we had a classical systemwith finitely
many degrees of freedom, say 𝑥1, . . . , 𝑥𝑑 , whose dynamics were governed by a Lagrangian
𝐿 (𝑥1, . . . , 𝑥𝑑 , ¤𝑥1, . . . , ¤𝑥𝑑 ). We can construct a Hamiltonian𝐻 (𝑥1, . . . , 𝑥𝑑 , 𝑝1, . . . , 𝑝𝑑 ), which is a
function of both the original 𝑥𝑗 ’s and their conjugate momentum variables 𝑝𝑗 = 𝜕𝐿/𝜕 ¤𝑥𝑗 ; the
formula for the Hamiltonian is𝐻 =

∑𝑑
𝑗=1 𝑝𝑗 ¤𝑥𝑗 − 𝐿. To quantize this system, we want to find

some Hilbert spaceH and some self-adjoint operators 𝑋1, . . . , 𝑋𝑑 , 𝑃1, . . . , 𝑃𝑑 for which (after
setting ℏ = 1) [𝑋 𝑗 , 𝑃𝑘 ] = 𝑖𝛿𝑗𝑘 and [𝑋 𝑗 , 𝑋𝑘 ] = [𝑃𝑗 , 𝑃𝑘 ] = 0; these are the canonical commutation
relations. We then write the Hamiltonian in terms of these 𝑋 𝑗 ’s and𝑃𝑗 ’s, look at the Schrödinger
equation, and so on.

Rather than finitelymany degrees of freedom, the state of a Klein–Gordon field at any instant
in time is given by specifying the value of 𝜙 at every point in space. That is, we have a whole
continuum of degrees of freedom, and they’re indexed by points in space rather than by the
numbers 1, . . . , 𝑑 . But we can still try to carry out something like the program from the previous
paragraph and see where we end up.

Our first job will be to write our dynamical law in terms of a Lagrangian. By analogy with the
discrete situation, the Lagrangian should be a function of both the values and time derivatives
of 𝜙 at a fixed point in time— that is, it should eat two real-valued functions onR3 and spit out
a number. The Lagrangian that produces the Klein–Gordon equation turns out to be

𝐿 (𝜙, 𝜕𝑡𝜙) =
1
2

∫
𝑑3x

[
(𝜕𝜙)2 −𝑚2𝜙2]

=
1
2

∫
𝑑3x

[
(𝜕𝑡𝜙 (x))2 − |∇𝜙 (x) |2 −𝑚2𝜙 (x)2

]
(The proof that this is the right Lagrangian is probably out of scope for this particular article,
although it may end up appearing in a later version of it. The final result is more important than
the derivation here, so for nowwe will skip this and a few other steps.)
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The next step is to write down the conjugate momentum variables to the 𝜙 (x)’s, which turn
out to be 𝜋 (x) = 𝜕𝑡𝜙 (x). This will let us write our Hamiltonian:

𝐻 =

(∫
𝑑3x 𝜋 (x)𝜕𝑡𝜙 (x)

)
− 𝐿

=
1
2

∫
𝑑3x

[
𝜋 (x)2 + |∇𝜙 (x) |2 +𝑚2𝜙 (x)2

]
It’s worthwhile to clear up a commonpoint of confusion about𝜋 right away. The variable𝜋 (x) is
like a “momentum” in the sense that it arises as a conjugate momentum variable to 𝜙 (x) in this
process of going from Lagrangian to Hamiltonianmechanics. It is certainly not amomentum
in the usual physical sense of the conserved quantity corresponding to spatial translations; that
quantity will appear later, but it doesn’t havemuch to do with 𝜋 .

We can now state our goal very explicitly. We would like to find a Hilbert spaceH with
self-adjoint operators 𝜙 (x) and 𝜋 (x) for each x ∈ R3. (We will, for the moment, work in the
Schrödinger picture, where the states depend on time and the operators don’t.) Everywhere we
had a sum over the indices on the 𝑥 ’s and𝑝 ’s in the discrete case we now have an integral over x,
so the canonical commutation relations become

[𝜙 (x), 𝜋 (y)] = 𝑖𝛿 (x − y), [𝜙 (x), 𝜙 (y)] = [𝜋 (x), 𝜋 (y)] = 0.

Finally,wewant to take theaboveexpression for theHamiltonianand translate it intoanoperator
on our Hilbert space. If wemanage to do all that, we will have a complete quantum version of
our field theory.

In the discrete case, where we start with 𝑑 degrees of freedom, it’s relatively straightforward
to construct the right Hilbert space and operators: we can takeH = L2 (R𝑑 ), on which 𝑋 𝑗 is
multiplication by 𝑥𝑗 and𝑃𝑗 = −𝑖 (𝜕/𝜕𝑥𝑗 ). Indeed, there is a result called the Stone–vonNeumann
Theorem which implies that, under an appropriate set of hypotheses, any representation of the
canonical commutation relations on a Hilbert space is isomorphic to this one.

The situation is muchmore complicated in field theory. There is not a particularly obvious
analogue of the recipe we just described in which all the integrals can be made to actually
converge. Furthermore, there is no Stone–von Neumann Theorem in the continuous setting;
there are lots of non-isomorphic representations of the canonical commutation relations.

Finally, even in the free-field setting where wewill be able to construct everything, there is
an additional difficulty owing the presence of delta functions in this whole discussion. Naively
treating 𝜙 (x) as an operator onH will turn out to produce an operator that, when applied
to essentially any vector inH at all, would produce a vector of infinite norm. The solution
(in the cases where it can be made to work at all) will be to treat 𝜙 (x) as an operator-valued
distribution, that is,

∫
𝑑3x 𝑓 (x)𝜙 (x), rather than𝜙 (x) itself, will be awell-definedoperator onH

for sufficiently well-behaved functions 𝑓 . Just as with ordinary delta functions, this introduces
difficulties when we try tomultiply distributions; we will, for example, need to be very careful
about what wemean by 𝜙 (x)2 in our expression for the Hamiltonian.

With the discrete version of this story inmind, it’s tempting to wonder why can’t just stuff
everything into some giantL2 as usual and call it a day. So I mention all these difficulties now
not because the details of the issues involved are supposed to be especially clear at this point,
but rather to impress on the reader why it is important to be careful how we carry out this
quantization procedure. We will instead take a somewhat more roundabout route to building
the Hilbert space that our quantum theory will take place in. In addition to beingmuch easier
to construct, this method will make it very easy to find all the eigenstates of the Hamiltonian,
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whichmeans the physical content of the theory will be especially transparent. Let’s see how this
works.

4 Harmonic Oscillators and Fock Space
It will be simpler if we start by confining everything to a cube 𝐴 = [− 1

2𝐿,
1
2𝐿]

3 ⊆ R3 and impose
periodic boundary conditions; we’ll look at what happens when 𝐿 → ∞ at the very end. With
that restriction in place, the functions 𝑓p (x) = 𝐿−3/2𝑒 𝑖p·x formanorthonormal basis of (complex-
valued) eigenfunctions for the operator ∇2 = 𝜕2𝑥 + 𝜕2𝑦 + 𝜕2𝑧 , where p ranges over the latticeΛ of all
vectors inR3 whose coordinates are integer multiples of 2𝜋/𝐿 . The eigenvalue associated to 𝑓p
is |p|2.

Take an arbitrary function 𝜙 : R × 𝐴 → R and, for each time 𝑡 , expand the corresponding
time slice of 𝜙 in terms of this basis. That is, write

𝜙 (𝑡 , x) = 𝐿−3/2
∑︁
p∈Λ

𝑞p (𝑡 )𝑒 𝑖p·x.

(The fact that 𝜙 is real-valuedmeans that 𝑞p and 𝑞−p have to be complex conjugates.) I then
encourage you to check that 𝜙 satisfies the Klein–Gordon equation equation if and only if the
𝑞p’s satisfy

𝑞 ′′
p (𝑡 ) + 𝜔2

p𝑞p (𝑡 ) = 0,

where 𝜔p =
√︁
|p|2 +𝑚2.

In other words, a Klein–Gordon field in a box is the same as a collection of countably many
uncoupled harmonic oscillators, one for each p ∈ Λ, where the period of the oscillator cor-
responding to p is 2𝜋/𝜔p. This will be the key observation that will guide us on our quest to
quantize the Klein–Gordon equation: our ultimate goal will be to replace each of these classical
harmonic oscillators with a quantum harmonic oscillator, and the fact that this is possible will
turn out to be the reason free fields are somuch easier to analyze than interacting fields.

The first question we need to address is which Hilbert space the states of our quantized
theory should live in. To answer this, suppose for just amoment thatwehadonly a finite number
of harmonic oscillators, say𝑁 of them, with periods 2𝜋/𝜔1, . . . , 2𝜋/𝜔𝑁 . Then we could take the
Hilbert space to beL2 (R𝑁 ), with the Hamiltonian

𝐻 =
1
2

𝑁∑︁
𝑗=1

(
𝑃 2
𝑗 + 𝜔2

𝑗 𝑋
2
𝑗

)
.

The reader should recall that it is possible to find a basis of eigenfunctions for this Hamilto-
nian by using annihilation and creation operators, defined as

𝐴𝑗 =

√︂
𝜔 𝑗

2
𝑋 𝑗 + 𝑖

1√︁
2𝜔 𝑗

𝑃𝑗 , 𝐴†
𝑗
=

√︂
𝜔 𝑗

2
𝑋 𝑗 − 𝑖

1√︁
2𝜔 𝑗

𝑃𝑗 ,

whichmakes

𝑋 𝑗 =
1√︁
2𝜔 𝑗

(𝐴𝑗 + 𝐴†
𝑗
), 𝑃𝑗 = −𝑖

√︂
𝜔 𝑗

2
(𝐴𝑗 − 𝐴†

𝑗
).
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Every eigenfunction of𝐻 is then of the form

𝜓𝑛1,...,𝑛𝑁
(𝑥) =

(𝐴†
1)𝑛1 · · · (𝐴

†
𝑁
)𝑛𝑁

√
𝑛1! · · ·𝑛𝑁 !

𝜓0 (𝑥),

where

𝜓0 (𝑥) =
𝑁∏
𝑗=1

[(𝜔 𝑗

𝜋

) 1
4
exp

(
−1
2
𝜔 𝑗𝑥

2
𝑗

)]
is the lowest-energyeigenfunction. TheHamiltonian itself can thenbewrittenas𝐻 =

∑
𝑗 𝜔 𝑗 (𝐴†

𝑗
𝐴𝑗+

1
2 ).

This suggests an alternative way of describing our Hilbert space, one that will turn out to
generalize nicely to the case of infinitely many oscillators. Consider the Hilbert space F𝑁 with
an orthonormal basis indexed by all𝑁 -tuples of nonnegative integers. Writing |𝑛1, . . . , 𝑛𝑁 ⟩ for
one of these basis vectors, define operators 𝐴𝑗 and 𝐴†

𝑗
on F𝑁 via the rules

𝐴𝑗 |𝑛1, . . . , 𝑛𝑁 ⟩ =
√
𝑛 𝑗 |𝑛1, . . . , 𝑛 𝑗 − 1, . . . , 𝑛𝑁 ⟩,

𝐴†
𝑗
|𝑛1, . . . , 𝑛𝑁 ⟩ =

√︁
𝑛 𝑗 + 1 |𝑛1, . . . , 𝑛 𝑗 + 1, . . . , 𝑛𝑁 ⟩,

with the understanding that if any of the 𝑛 𝑗 ’s becomes negative then the corresponding vector
is zero. I encourage you to check that, as the notation suggests, these two operators are indeed
adjoints of each other, and that sending𝜓𝑛1,...,𝑛𝑁

to |𝑛1, . . . , 𝑛𝑁 ⟩ gives an isomorphism ofHilbert
spaces fromL2 (R𝑁 ) to F𝑁 which takes the operators 𝐴𝑗 and 𝐴†

𝑗
onL2 (R𝑁 ) to the operators on

F𝑁 of the same names. This just amounts to checking that the relations in the two equations
above are also true of the𝜓 ’s, for which it will probably be helpful to first prove the commutation
relations [𝐴𝑗 , 𝐴

†
𝑘
] = 𝛿𝑗𝑘 and [𝐴𝑗 , 𝐴𝑘 ] = [𝐴†

𝑗
, 𝐴†

𝑘
] = 0.

This space F𝑁 is a special case of an object called a bosonic Fock space, which it’s worth
taking a bit of time to define abstractly.

LetH be any separable Hilbert space, and, for any 𝑘 ≥ 0, consider the symmetric power
Sym𝑘H , that is, the quotient ofH⊗𝑘 by the relations

𝑣1 ⊗ · · · ⊗ 𝑣𝑖 ⊗ 𝑣𝑖+1 ⊗ · · · ⊗ 𝑣𝑘 = 𝑣1 ⊗ · · · ⊗ 𝑣𝑖+1 ⊗ 𝑣𝑖 ⊗ · · · ⊗ 𝑣𝑘 .

Wewill follow the usual convention of omitting the tensor product symbol when talking about
elements of Sym𝑘H , for example writing 𝑣1𝑣2 · · ·𝑣𝑘 instead of 𝑣1 ⊗ 𝑣2 ⊗ · · · ⊗ 𝑣𝑘 . We can use the
inner product onH to define one on Sym𝑘H by setting

⟨𝑣1 · · ·𝑣𝑘 |𝑤1 · · ·𝑤𝑘 ⟩ =
∑︁
𝜎∈𝑆𝑘

⟨𝑣1 |𝑤𝜎 (1)⟩ · · · ⟨𝑣𝑘 |𝑤𝜎 (𝑘 )⟩,

where the sum is over all permutations of {1, . . . , 𝑘 }. If 𝑒1, 𝑒2, . . . is an orthonormal basis forH ,
then the set of all monomials (1/

√
𝑛1!𝑛2! · · ·)𝑒𝑛11 𝑒𝑛22 · · · with∑

𝑛𝑖 = 𝑘 forms an orthonormal
basis for Sym𝑘H .

The bosonic Fock space is then defined to be the Hilbert space

F (H) =
∞⊕
𝑘=0

Sym𝑘H .
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This should be taken as an orthogonal direct sum, that is, vectors in different summands are
orthogonal to each other. The first summand Sym0H is taken to beC. Recall that the Hilbert
space direct sum is defined as the completion of the vector space direct sum; that is, an arbitrary
element of F (H) is a formal sum

∑∞
𝑘=0 𝑠𝑘 where each 𝑠𝑘 ∈ Sym𝑘H and

∑∞
𝑘=0 |𝑠𝑘 |2 < ∞.

The space F𝑁 where we put the states of our finite system of harmonic oscillators can then
be recovered as F (C𝑁 ). If 𝑒1, . . . , 𝑒𝑁 is a basis forC𝑁 , then the state we called |𝑛1, . . . , 𝑛𝑁 ⟩ above
can be identified with (1/

√
𝑛1! · · ·𝑛𝑁 !)𝑒𝑛11 · · · 𝑒𝑛𝑁

𝑁
∈ Sym𝑛1+···+𝑛𝑁C𝑁 ⊆ F (C𝑁 ).

We can define annihilation and creation operators from this perspective. For any 𝑣 ∈ H , we
can define 𝐴†

𝑣 : Sym𝑘H → Sym𝑘+1H by the rule

𝐴†
𝑣𝑤1 · · ·𝑤𝑘 = 𝑣𝑤1 · · ·𝑤𝑘 .

The adjoint 𝐴𝑣 is then given by

𝐴𝑣𝑤1 · · ·𝑤𝑘+1 =
𝑘+1∑︁
𝑖=1

⟨𝑣,𝑤𝑖 ⟩𝑤1 · · ·𝑤𝑖 · · ·𝑤𝑘+1,

where the hat on a𝑤𝑖 means we leave that factor out of the product. I encourage you to check
that this agrees with the rules we gave above.

This setup is straightforward to generalize to the case of infinitelymanyharmonic oscillators:
we can simply consider the Fock space F (H), whereH is a Hilbert space with a countable
orthonormal basis with one vector for each oscillator. This will be the state space we’ll want to
use for the system of countably many harmonic oscillators arising from our quantumKlein–
Gordon field.

5 Putting the Klein–Gordon Field in Fock Space
Our next task will be to relate this description to the one in terms of fields that we started with.
Earlier we wrote an arbitrary solution of the classical Klein–Gordon equation in the form

𝜙 (𝑡 , x) = 𝐿−3/2
∑︁
p∈Λ

𝑞p (𝑡 )𝑒 𝑖p·x,

where each 𝑞p (𝑡 ) is a harmonic oscillator with period 2𝜋/𝜔p. Our goal, one again, will be to take
each of these classical harmonic oscillators and replace it with a quantum harmonic oscillator.

There are two small wrinkles in this process that we’ll need to be somewhat careful about.
First, 𝑞p is a complex-valued function, whereas the thing we know how to quantize is a real-
valued harmonic oscillator. Second, the fact that 𝜙 is real-valuedmeans that 𝑞−p = 𝑞p, and so
when we index the degrees of freedom by pwe are double-counting.

We can deal with the first issue by splitting 𝑞p into real and imaginary parts, writing 𝑞p =

𝑟p+𝑖 𝑠p. Note that 𝑟p and 𝑠p are then independent real-valuedharmonic oscillatorswith the same
period as 𝑞p. It will bemore convenient to deal with the second issue about double-counting
after quantizing than before; for now, we’ll just need to remember that 𝑟p = 𝑟−p and 𝑠p = −𝑠−p.

So we ought to work in the Fock space F (H), whereH is a Hilbert space with an orthonor-
mal basis consisting of one vector 𝑣p for each 𝑟p and one vector𝑤p for each 𝑠p, modulo the
relations 𝑣p = 𝑣−p and𝑤p = −𝑤−p. Let’s write 𝐵p, 𝐵†

p for the annihilation and creation operators
corresponding to 𝑣p and𝐶p,𝐶

†
p for the ones corresponding to𝑤p. By looking back at our earlier



Section 5 Putting the Klein–Gordon Field in Fock Space 10

expressions relating 𝑋 𝑗 and 𝑃𝑗 to 𝐴𝑗 and 𝐴†
𝑗
, I encourage you to convince yourself that in terms

of these new operators our double-counting takes the form 𝐵p = 𝐵−p and𝐶p = −𝐶−p.
We can nowwrite our field in terms of these creation and annihilation operators. Our 𝑟p and

𝑠p are the analogues of the 𝑥𝑗 ’s from the version with finitely many harmonic oscillators, so they
should correspond to operators𝑅p = 1√

2𝜔p
(𝐵p + 𝐵†

p), and analogously for 𝑠 . So, if we start with
the classical field

𝜙 (𝑡 , x) = 𝐿−3/2
∑︁
p∈Λ

[
𝑟p (𝑡 ) + 𝑖 𝑠p (𝑡 )

]
𝑒 𝑖p·x

andmake these substitutions, we get the operator

𝜙 (x) = 𝐿−3/2
∑︁
p∈Λ

1√︁
2𝜔p

[
𝐵p + 𝐵†

p + 𝑖𝐶p + 𝑖𝐶 †
p

]
𝑒 𝑖p·x.

This expression will turn out to give us a nice way to solve our double-counting problem. If
we write 𝐴p = 𝐵p + 𝑖𝐶p, note that there is no longer any redundancy— unlike the 𝐵 ’s and𝐶 ’s,
the 𝐴’s are all linearly independent. A bit of playing around with the sum above will turn it into

𝜙 (x) = 𝐿−3/2
∑︁
p∈Λ

1√︁
2𝜔p

[
𝐴p𝑒

𝑖p·x + 𝐴†
p𝑒

−𝑖p·x
]
,

which is the expression we’ll want for 𝜙 .
This move corresponds to a change of basis in the Hilbert spaceH that we used to build the

Fock space we are working in: if we write 𝑒p = 𝑣p − 𝑖𝑤p, then the 𝐴’s are the annihilation and
creation operators with respect to this new basis. Thismeans that we can now completely forget
about the 𝐵 ’s and𝐶 ’s in favor of the 𝐴’s! Our state space still describes a system of countably
many quantum harmonic oscillators, with the caveat that now they no longer correspond
directly to the real-valued classical harmonic oscillators we started with.

There are two options for seeingwhat theHamiltonian should look like. The first is to use the
expression𝐻 = 1

2
∫
𝑑3x

[
𝜋 (x)2 + |∇𝜙 (x) |2 +𝑚2𝜙 (x)2

]
for the classical Hamiltonianmentioned

above. A derivation analogous to the one we just did for 𝜙 will produce the expression

𝜋 (x) = −𝑖𝐿−3/2
∑︁
p∈Λ

√︂
𝜔p

2

[
𝐴p𝑒

𝑖p·x − 𝐴†
p𝑒

−𝑖p·x
]
,

which, after a long and tedious computation, gives us

𝐻problematic =
1
2

∑︁
p∈Λ

𝜔p

[
𝐴p𝐴

†
p + 𝐴†

p𝐴p

]
.

The other option is simpler but a bit more disconnected from the field theory we started
with: if we start from the expression𝐻 =

∑
𝑗 𝜔 𝑗 (𝐴†

𝑗
𝐴𝑗 + 1

2 ) for the Hamiltonian of our system of
finitely many harmonic oscillators, we see that the analogous expression for us should be

𝐻still problematic =
∑︁
p∈Λ

𝜔p

[
𝐴†
p𝐴p +

1
2

]
.

These expressions are equivalent to each other— one application of the commutation rule
[𝐴p, 𝐴†

p] = 1 will take one to the other— but, as my extremely subtle use of notation indicated,
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they both suffer from a problem: these sums diverge. Indeed, we have𝜔p =
√︁
|p|2 +𝑚2 ≥ 𝑚, so

the second term of that last sum is obviously trouble! The solution is quite simple, though. On
the grounds that adding a constant to the Hamiltonian can never affect the physics, we simply
redefine the Hamiltonian to be

𝐻 =
∑︁
p∈Λ

𝜔p𝐴
†
p𝐴p.

(If the idea of subtracting off an “infinite constant” feels dodgy, it might makemore sense to
think of subtracting it all the way back in the finite system of harmonic oscillators, and only
then let the number of oscillators go to infinity.)

With this final definition inplacewehave completed the task of quantizing theKlein–Gordon
field, at least the version that’s confined to a box. The states live in the Fock space F (H) where
H is (after the change of basis discussed above) a Hilbert space with an orthonormal basis
consisting of one vector 𝑒p for each p ∈ Λ. We can then define observables for the value
of the field at a point 𝜙 (x), its conjugate momentum 𝜋 (x), and the Hamiltonian𝐻 in terms
of annihilation and creation operators using the formulas above. Every vector of the form
𝑒p1𝑒p2 · · · 𝑒p𝑘 ∈ Sym𝑘H ⊆ F (H) is an eigenvector of the Hamiltonian, and I encourage you
to check that the eigenvalue is

∑𝑘
𝑖=1 𝜔p𝑖 . (In particular, it’s finite, so our redefinition of𝐻 was

successful!)
The structure of theHilbert spacewe ended upwith suggests an interpretationwe can attach

to the states: we think of the states in Sym𝑘H ⊆ F (H) as consisting of 𝑘 particles. The unique
state in Sym0H � C is written |0⟩ and is called the vacuum. Because every 𝐴p kills this state, it is
an eigenvector of𝐻 with eigenvalue 0, whichmakes it the unique lowest-energy state in F (H).

The one-particle states are spanned by vectors of the form 𝑒p = 𝐴†
p |0⟩ ∈ Sym1H , and such

a state is an eigenvector of𝐻 with eigenvalue 𝜔p. This is in fact part of what makes the particle
interpretation a natural one to use: because we defined 𝜔p =

√︁
|p|2 +𝑚2, if we combine p

and 𝜔p into a four-vector 𝑝 = (𝜔p,p) then 𝑝 is the energy-momentum of a particle of mass
𝑚! This interpretation also carries over to each Sym𝑘H : a state of the form 𝐴†

p1 · · · 𝐴
†
p𝑘 |0⟩ is an

eigenvector of𝐻 with eigenvalue𝜔p1 + · · · +𝜔p𝑘 , which is what we should get for the total energy
of a collection of 𝑘 noninteracting particles with thosemomenta.

The fact that these states are all eigenstates of𝐻 is the sense in which our field theory is
a free field theory: any number of particles can coexist forever without interacting with each
other. In the interacting field theories we will study later, we will still want the vacuum and the
one-particle states to be eigenstates of𝐻 (at least the ones corresponding to stable particles) but
we will not want this for states withmore that one particle—we want the particles to interact
with each other, whichmeans a state involving at least two particles should change over time!
This will turn out to complicate the story considerably.

Fields as Operator-Valued Distributions
There is one technical issue that it is probably worth talking about here. Let’s try to compute the
norm of the state 𝜙 (0) |0⟩. (Remember that the two zeroes here refer to different things! The
former is the point 0 ∈ R3, and the latter is the name of the vacuum state.) Using the fact that
all the 𝐴p’s kill the vacuum state, we see that

𝜙 (0) |0⟩ = 𝐿−3/2
∑︁
p∈Λ

1√︁
2𝜔p

𝐴†
p |0⟩.
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Then, using the commutation relations for the 𝐴’s and 𝐴†’s, the norm can be computed as

⟨0|𝜙 (0)𝜙 (0) |0⟩ = 𝐿−3
∑︁
p∈Λ

∑︁
q∈Λ

1
2√𝜔p𝜔q

⟨0|𝐴p𝐴†
q |0⟩

= 𝐿−3
∑︁
p∈Λ

1
2𝜔p

.

Because 1/𝜔p = ( |p|2 +𝑚2)−1/2 ∼ |p|−1, this sum clearly diverges. That is, while it’s not as
bad a divergence as the one that afflicted our first attempt at the Hamiltonian, the operator
𝜙 (x) seems to be problematic. This problem is very closely related to the fact that, in ordinary
quantummechanics, position andmomentumeigenstates aren’t honest elements of ourHilbert
space— in both cases, we are trying to localize a state “infinitely finely” in space and are ending
up with a delta-function-like object.

The solution is similar as well: rather than 𝜙 (x) being an actual operator on F (H), 𝜙 is
an operator-valued distribution, that is, a map that takes a Schwartz functions 𝑓 to an actual
operator, where 𝜙 ( 𝑓 ) is meant to be treated as though it were

∫
𝑑3x 𝑓 (x)𝜙 (x).Our definition of

𝜙 should then technically be

𝜙 ( 𝑓 ) = 𝐿−3/2
∑︁
p∈Λ

1√︁
2𝜔p

[
𝐴p 𝑓 (p) + 𝐴†

p 𝑓 (p)
]
,

where 𝑓 means the Fourier transform of 𝑓 .
We will for themost part adopt the usual notational fiction that 𝜙 (x) is an actual operator.

This issue is still worth keeping inmind, though! It will have a couple of consequences later on
in our discussion.

6 Removing the Box
We have onemore task ahead of us: we need to remove the restriction that our field is confined
to a box. In addition to getting us closer to the physical situation we’re actually modelling, this
will also give us an opportunity to see how the Lorentz symmetry reemerges in the quantum
version of the theory.

What Hilbert space should this limiting theory live in? Our Fock space F (H) was built out
of a Hilbert spaceH with a basis vector for each point in the latticeΛ consisting of all points in
R3 whose coordinates are multiples of 2𝜋/𝐿 , and we interpreted the vector in Sym1H ⊆ F (H)
corresponding to p as a one-particle state where the particle has momentum p. When we let 𝐿
go to infinity,H is going to need to be replaced by something that can represent one-particle
states with arbitrary momenta.

Our operators will therefore act on the Fock space F (L2 (R3)), where we think of the un-
derlyingR3 asmomentum space. The fact that one-particle states with definite momentum
correspond to delta functions, which are distributions rather than honest elements ofL2 (R3),
adds some complications if one wants to do everything rigorously (just as it does in ordinary
quantummechanics), but since that is not our primary goal here we will only touch on these
issues briefly. Folland’s bookmentioned in the introduction is an excellent source for a careful,
rigorous version of this construction.

Our goal will be to express 𝜙 , 𝜋 , and 𝐻 in terms of annihilation and creation operators
corresponding to arbitrary momenta, which are usually written 𝑎 (p) and 𝑎† (p). We will use the
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expressions we already have for the theory confined to a box as our starting point. There are a
few choices one could make for how to relate these new operators to the old 𝐴p and 𝐴†

p as we let
𝐿 go to infinity, and unfortunately there isn’t a universally agreed-upon convention— different
choices lead to factors of 2𝜋 and/or 𝜔p showing up in various different places. Our choice will
be to start with the goal of having the commutation relations look like

[𝑎 (p), 𝑎† (p′)] = 𝛿 (p − p′), [𝑎 (p), 𝑎 (p′)] = [𝑎† (p), 𝑎† (p′)] = 0

and allow this to dictate everything else.
With this in place, we can give at least a rough plausibility argument for how the continuous

𝑎 (p)’s should relate to the discrete 𝐴p’s. Let’s suppose we have some function 𝑓 ∈ L2 (R3), and
consider the state

| 𝑓 ⟩ =
∫

𝑑3p 𝑓 (p)𝑎† (p) |0⟩ ∈ Sym1 (L2 (R3)) ⊆ F (L2 (R3)),

where |0⟩ is the vacuum state. We can compute

⟨𝑓 | 𝑓 ⟩ =
∬

𝑑3p𝑑3q 𝑓 (p) 𝑓 (q)⟨0|𝑎 (p)𝑎† (q) |0⟩

=

∫
𝑑3p | 𝑓 (p) |2,

where to get to the second line we’ve used the fact that 𝑎 (p)𝑎† (q) = 𝑎† (q)𝑎 (p) + 𝛿 (p − q) and
that 𝑎 (p) |0⟩ = 0.

What state should | 𝑓 ⟩ correspond to in the discrete version of this story? If we pick some 𝐿
and write down a Riemann sum approximation of the definition of | 𝑓 ⟩ over the corresponding
latticeΛ, we get that

| 𝑓 ⟩ ≈
∑︁
p∈Λ

𝑓 (p)𝑎† (p) |0⟩
(
2𝜋
𝐿

)3
,

because (2𝜋/𝐿)3 is the volume of one of the little cubesmaking up the latticeΛ. On the other
hand, we can build a similar state with approximately the same norm as | 𝑓 ⟩ out of 𝐴†

p’s: if we set

| 𝑓 ⟩ =
∑︁
p∈Λ

𝑓 (p)𝐴†
p |0⟩

(
2𝜋
𝐿

) 3
2

,

then

⟨𝑓 | 𝑓 ⟩ =
∑︁
p∈Λ

∑︁
q∈Λ

𝑓 (p) 𝑓 (q)⟨0|𝐴p𝐴†
q |0⟩

(
2𝜋
𝐿

)3
=
∑︁
p∈Λ

| 𝑓 (p) |2
(
2𝜋
𝐿

)3
≈
∫

𝑑3p | 𝑓 (p) |2.

Comparing the expressions for | 𝑓 ⟩ and | 𝑓 ⟩, the conclusion from all of this is that, as we let 𝐿 go
to infinity, the operator we replace with 𝑎 (p) should be (𝐿/2𝜋)3/2𝐴p.
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Let’s look again at our expression for the operator 𝜙 :

𝜙 (x) = 𝐿−3/2
∑︁
p∈Λ

1√︁
2𝜔p

[
𝐴p𝑒

𝑖p·x + 𝐴†
p𝑒

−𝑖p·x
]

Recall that this is a sum over the latticeΛ consisting of all points inR3 whose coordinates are
multiples of 2𝜋/𝐿 . As 𝐿 → ∞, this lattice gets finer and finer, and it is therefore tempting to read
this equation as a Riemann sum for an integral overR3. As in the computation we just did, it
will be helpful to isolate the volume element (2𝜋/𝐿)3 in this sum, and so we can write

𝜙 (x) =
∑︁
p∈Λ

1√︁
2𝜔p

[(
𝐿

2𝜋

) 3
2

𝐴p𝑒
𝑖p·x +

(
𝐿

2𝜋

) 3
2

𝐴†
p𝑒

−𝑖p·x

]
(2𝜋/𝐿)3

(2𝜋)3/2
.

With the conventions we’ve chosen, this gives us as our limiting expression

𝜙 (x) =
∫

𝑑3p
(2𝜋)3/2

1√︁
2𝜔p

[
𝑎 (p)𝑒 𝑖p·x + 𝑎† (p)𝑒 −𝑖p·x

]
.

The corresponding expression for 𝜋 is

𝜋 (x) = −𝑖
∫

𝑑3p
(2𝜋)3/2

√︂
𝜔p

2
[
𝑎 (p)𝑒 𝑖p·x − 𝑎† (p)𝑒 −𝑖p·x

]
.

I encourage you to check that, with these definitions, 𝜙 and 𝜋 satisfy the desired commutation
relations.

Applying the same logic to the Hamiltonian produces the formula

𝐻 =

∫
𝑑3p𝜔p𝑎

† (p)𝑎 (p).

Just as we discussed for the field operators 𝜙 (x) in the last section, 𝑎 (p) and 𝑎† (p) are, strictly
speaking, not operators but operator-valued distributions. How, then, do we know that it’s
okay tomultiply them by each other in this way? One answer is that you can naively apply that
operator to an honest, well-normalized state like∫

· · ·
∫

𝑑3p1 · · ·𝑑3p𝑛 𝑓 (p1, . . . ,p𝑛)𝑎† (p1) · · · 𝑎† (p𝑛) |0⟩

and see that the result still has finite norm. It is a nice exercise to define𝐻 directly as an operator
without referring to 𝑎 ’s and 𝑎†’s, after which you are free to treat the above expression as merely
a suggestive notational shorthand for the “real” definition.

In any case, as we did with the field operators, we are going to continue to use notation like
𝑎 (p) even though this is a distribution.

7 Getting Symmetry Back
Everything up to this point has required us to ignore the fact that the classical theory we started
with was invariant under all the symmetries of special relativity—we had to pick a privileged
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time direction to write down a Hamiltonian. Now that we have it in its final version, we are in a
position to see how these symmetries act on our system.

The symmetries we care about are spacetime translations, rotations, and Lorentz boosts.
Together they forma 10-dimensional Lie group called thePoincaré group. Because the Poincaré
group acts on both the space and time coordinates, and we already have the three space coordi-
nates as parameters to 𝜙 , it will bemuchmore convenient if 𝜙 can be thought of as a function
of time as well. That is to say, the time has come for us to switch from the Schrödinger picture to
the Heisenberg picture, allowing our operators to depend on time rather than our states.

Because we have an explicit expression for our Hamiltonian, and the Hamiltonian is the
generator of time translations, it’s relatively straightforward to add this time dependence to our
operators. (We could in fact have done this part even before removing the box.) I encourage
you to use the commutation relations to verify that

𝑑𝑎 (p; 𝑡 )
𝑑𝑡

= −𝑖 [𝑎 (p; 𝑡 ), 𝐻 ] = −𝑖𝜔p𝑎 (p; 𝑡 ),
𝑑𝑎† (p; 𝑡 )

𝑑𝑡
= −𝑖 [𝑎† (p; 𝑡 ), 𝐻 ] = 𝑖𝜔p𝑎

† (p; 𝑡 ).

This means that 𝑎 (p; 𝑡 ) = 𝑒 −𝑖𝜔p𝑡𝑎 (p), and similarly with the opposite sign for 𝑎†, which gives us

𝜙 (𝑡 , x) =
∫

𝑑3p
(2𝜋)3/2

1√︁
2𝜔p

[
𝑎 (p)𝑒 −𝑖𝜔p𝑡+𝑖p·x + 𝑎† (p)𝑒 𝑖𝜔p𝑡−𝑖p·x] .

Pleasingly, the exponents in both terms of this expression contain the inner product of the
four-vector 𝑥 = (𝑡 , x) with the energy-momentum vector𝑝 = (𝜔p,p). With these definitions in
place, we can write

𝜙 (𝑥) =
∫

𝑑3p
(2𝜋)3/2

1√︁
2𝜔p

[
𝑎 (p)𝑒 −𝑖𝑝 ·𝑥 + 𝑎† (p)𝑒 𝑖𝑝 ·𝑥

]
.

Applying this recipe to 𝜋 produces

𝜋 (𝑥) = −𝑖
∫

𝑑3p
(2𝜋)3/2

√︂
𝜔p

2
[
𝑎 (p)𝑒 −𝑖𝑝 ·𝑥 − 𝑎† (p)𝑒 𝑖𝑝 ·𝑥

]
.

Note that we in fact have, as operators, 𝜕𝑡𝜙 (𝑥) = 𝜋 (𝑥). This has the effect of allowing us to
eliminate 𝜋 from playing an explicit role in our discussion of the action of the Poincaré group;
this is very nice, because 𝜋 depends on our chosen time direction which does not play nicely
with Lorentz boosts.

Our goal is to define an action of the Poincaré group on our Hilbert space F (H). Having the
Hamiltonian in hand already tells us how time translations should work: translating forward by
𝑡 corresponds to the action of 𝑒 −𝑖𝑡𝐻 . To determine the rest of the action, we’ll be guided by two
principles. First, we know how 𝜙 transforms in the classical theory; this gives us a prescription
for how the Poincaré group should affect the operators 𝜙 (𝑥), and therefore (after solving for
them in terms of 𝜙 and its derivatives) how it affects the operators 𝑎 (p) and 𝑎† (p). (If a group
element 𝑔 acts on the Hilbert space via some unitary map𝑈 (𝑔 ), then it acts on an operator
𝑂 by𝑂 ↦→𝑈 (𝑔 )−1𝑂𝑈 (𝑔 ).) Second, the vacuum state |0⟩ should be fixed by our action, which
when combined with an idea for how the action affects the 𝑎† (p)’s will tell us what happens to
every state in F (H).

Because our classical theory was a scalar field theory, the action of the Poincaré group on
𝜙 is especially simple: we simply have (𝑔 .𝜙) (𝑥) = 𝜙 (𝑔 −1𝑥). (If we were working with a vector
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or spinor field, which wemay discuss in a later article in this series, this recipe would bemore
complicated.) We can therefore postulate that the same ought to true of the operator 𝜙 — that
is,𝑈 (𝑔 )−1𝜙 (𝑥)𝑈 (𝑔 ) = 𝜙 (𝑔 −1𝑥)—and ask what this means about what the group does to 𝑎 (p)
and 𝑎† (p).

We have already described the action of time translations above. For space translations and
rotations, the answer is quite straightforward, because these transformations don’t mess with
the direction of time derivatives. I encourage you to check that, if𝑈 (r) is themap corresponding
to translation by r ∈ R3, then

𝑈 (−r)𝑎 (p)𝑈 (r) = 𝑒 −𝑖p·r𝑎 (p), 𝑈 (−r)𝑎† (p)𝑈 (r) = 𝑒 𝑖p·r𝑎† (p),

and that𝑈 (𝑅) is themap corresponding to some rotation𝑅 ∈ 𝑆𝑂 (3), then

𝑈 (𝑅)−1𝑎 (p)𝑈 (𝑅) = 𝑎 (𝑅−1p), 𝑈 (𝑅)−1𝑎† (p)𝑈 (𝑅) = 𝑎† (𝑅−1p).

Just as in ordinary quantummechanics, if we know how to translate and rotate states, then
we can definemomentum and angular momentum observables as the infinitesimal generators
of these transformations. That is, for example, if𝑈 (𝑎e1) is operator that translates by 𝑎 in the
positive 𝑥 direction, then the operator corresponding to the 𝑥 component of momentum is

𝑃𝑥 = 𝑖
𝑑𝑈 (𝑎e1)

𝑑𝑎

����
𝑎=0

.

In the Poincaré group, all spatial and temporal translations commute with each other, which
means that the operators𝐻 , 𝑃𝑥 , 𝑃𝑦 , and 𝑃𝑧 must commute with each other as well.

In the spirit of respecting the symmetries of special relativity, it’s often helpful to group
these four observables together into a four-vector-valued operator which we call 𝑃 , writing
𝑃 = (𝐻 ,𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧 ) = (𝐻 ,P). Because the components of 𝑃 all commute with each other, they
are simultaneously diagonalizable, and so we can talk about eigenvectors and eigenvalues of
𝑃 as a whole, where we think of the eigenvalues as living inR4. I encourage you to check that,
in this language, the eigenstates of 𝑃 are exactly the 𝑛-particle states 𝑎† (p1) · · · 𝑎† (p𝑛) |0⟩, and
that the eigenvalue of such a state is𝑝1 + · · · + 𝑝𝑛 . (Here we again follow our usual convention
that 𝜔p is always the time component of 𝑝 .) It’s a nice exercise to work out how to write P in
terms of annihilation and creation operators.

Lorentz boosts are a bit more involved, and we won’t work out all the details of the computa-
tion here. It turns out that, with the way we have chosen to normalize our operators, the 𝑎 ’s and
𝑎†’s don’t behave quite as nicely with respect to boosts as they do with respect to rotations. Sup-
pose𝑈 (𝐵) is the unitarymap corresponding to a Lorentz boost𝐵 , and we allow boosts to act on
momentum vectors p ∈ R3 by treating p as the spatial components of the energy-momentum
vector𝑝 = (𝜔p,p). Then we have

𝑈 (𝐵)−1𝑎 (p)𝑈 (𝐵) =
√︄

𝜔𝐵.p

𝜔p
𝑎 (𝐵.p),

and similarly for 𝑎†. This amounts to a similarly ugly expression for how boosts act on particle
states.

It is sometimesnice tohaveamoreLorentz-invariant versionof theannihilationandcreation
operators. So let’s define, for any energy-momentum vector𝑝 with𝑝2 = 𝑚2, the operator

𝛼 (𝑝) = (2𝜋)3/2
√︁
2𝜔p𝑎 (p).
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We then have
𝑈 (𝐵)−1𝛼 (𝑝)𝑈 (𝐵) = 𝛼 (𝐵𝑝),

and similarly for 𝛼†. These versions of the operators play more nicely with Lorentz transforma-
tions than the original ones at the cost of havingmore complicated commutation relations. In
terms of these operators, our expression for 𝜙 (𝑥) looks like

𝜙 (𝑥) =
∫

𝑑3p
(2𝜋)32𝜔p

[
𝛼 (𝑝)𝑒 −𝑖𝑝 ·𝑥 + 𝛼† (𝑝)𝑒 𝑖𝑝 ·𝑥

]
.

This expression is in fact evenmore Lorentz-invariant than itmight first appear! I encourage
you to check that themeasure 𝑑3p/2𝜔p is itself preserved by Lorentz boosts. In fact, this is the
surface area measure on the hypersurface {𝑝 ∈ R4 : 𝑝2 = 𝑚2, 𝑝𝑡 > 0}. This hypersurface is
sometimes called themass shell; note that, per our earlier discussion, the mass shell is also the
spectrum of the energy-momentum operator 𝑃 when restricted to the one-particle states.

8 A Preview of Mathematical Difficulties to Come
It is possible, with a bit more work than we’ve expended here, tomake this entire story of the
free scalar field completely rigorous. The same cannot be said of the interacting theories we’re
about to encounter.

The fact that our fields are represented by operator-valued distributions rather than honest
operators causes more problems than youmight expect. In interacting theories, the classical
Hamiltonian will contain terms with degree higher than two. This makes it very difficult to
write down a quantum version of the Hamiltonian, because doing so would involve multiplying
distributions, which is not a sensible operation in general. In our free field theory, we were able
to write down a sensible quantum version of our Hamiltonian even though it involved a 𝜙2 by
taking advantage of the structure of our Fock space with its creation and annihilation operators.

All separableHilbert spaces are isomorphic to eachother, so therewouldbenothing stopping
you from trying to stick your favorite interacting quantum field theory in Fock space as well.
But, sadly, it’s just not possible to follow the programwe laid out here in general if your goal is to
end up with a well-defined operator to serve as your Hamiltonian with a unique lowest-energy
state to serve as the vacuum.

The operator-valued distribution perspective lies behind probably the most prominent
scheme for formalizing quantum field theory, the so-called Wightman axioms. Because this
is not a series on attempts to build mathematically rigorous versions of quantum field theory,
we won’t discuss these axioms in detail. I bring them up only to report the unfortunate fact
that no one hasmanaged to construct a fully rigorous version of a quantum field theory with
interactions in four dimensions, and as far as I know this is equally true of every other such
formalization program.

The fact of the matter is that the problem of building a formal mathematical model of a
physically realistic quantum field theory is an open problem. Therefore, as we go forward
with this series, we’re going to have to abandon the expectation that, every time we refer to an
operator on a Hilbert space, someone somewhere has actually constructed a Hilbert space and
an operator with the desired properties. Instead, we’ll have to adopt the physicist’s perspective
that any computation that produces a number that can be checked by experiment must have
something behind it, even if no one knows how to build the things that the symbols are meant
to refer to.

https://en.wikipedia.org/wiki/Wightman_axioms
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This tends to makemathematicians somewhat uncomfortable, so if you are in this position,
I hope that as this series continues you know that I share this discomfort and I will do my
best to describe the symbols that appear in a way that at least acknowledges the hypothesized
shape of the as-yet-nonexistent mathematical objects they’re supposed to represent. I find it
helpful to imagine the foundations of quantumfield theory as a series of conjectures rather than
definitions, and the details of the field as the study of the consequences of these conjectures.
There is still a very beautiful picture to see from this perspective, which I hope to share with you
as this series continues.
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