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Quantum Field Theory IV -
Renormalization

Nic Ford

1 Introduction
This article is part of a series on physics for mathematicians, and the third in a sub-series on
quantum field theory. It is a direct sequel to the first, second, and third articles in that series,
and it will be very helpful to be familiar with the contents of those articles before tackling this
one.

In the previous article, we examined q4 theory, the interacting scalar field theory with
Lagrangian

L =
1
2 ((mq)

2 −;2q2) − _

4!q
4.

Wediscussedhowtoexpress this theory’s scatteringamplitudes—and inparticular themomentum-
space time-ordered <-point functions �̃ (<) that appear in the LSZ formula— in terms of power
series whose terms are indexed by Feynman diagrams. Using the Källén–Lehmann spectral
representation, we also found a useful connection between the two-point function and the
quantities ` and / that appear in the LSZ formula: the quantity multiplying the delta function
in �̃ (2) (>,−?) has a pole at>2 = `2, and the residue at that pole is / .

As pretty as this story was, it had a rather serious problem: almost none of the integrals it
produces converge. In the final section of the last article, we discussed why this happened and
started to sketch out amethod for solving it. It starts with the observation that the parameters
; and _ that appear in the Lagrangian are not physically measurable. (The same is in fact true
of / , as we’ll discuss whenwe carry out the computation.) Even if we didn’t have these divergent
integrals to worry about, we would need to address this: in order to compare our results with
experiment, they need to be expressed in terms of quantities whose values we can actually
discover!

But we do have some divergent integrals to worry about, and perhaps surprisingly this
injunction to write everything in terms of measurable quantities offers a way out of that prob-
lem as well. The basic idea is to start by writing all of our diagram integrals as limits of finite
quantities as some parameter called a “cutoff” goes to infinity, and then write these finite quan-
tities as functions of our physically measurable quantities. This part of the process is called
regularization. Whenwe do this,;,_, and / will be functions of the cutoff, but the hope is that
the scattering amplitudes themselves will — as a function of our new, physically measurable
parameters— converge to something finite.

This procedure, where we rewrite the value of each Feynman diagram in terms of our new,
more physically relevant parameters, is called renormalization, and it’s the key final step that
we’ll need to extract numbers fromaquantumfield theory thatwe can comparewith experiment.

https://nicf.net/articles/physics-for-mathematicians
https://nicf.net/articles/qft-free-fields/
https://nicf.net/articles/qft-scattering-lsz/
https://nicf.net/articles/qft-feynman/
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In this piece, I hope to describe how it works well enough for you to understand the idea, but I
won’t explain all the computations in as much detail as most physics texts. If you’re interested
in digging into that side of the story, I’ll include references to other sources as we go.

It’s also worthmentioning that there are two different points of view one can take on renor-
malization, often called the “classical” and “Wilsonian” perspectives. I think it’s useful to under-
stand both to have a complete picture of what’s going on, but this article will focus entirely on
the classical perspective. We’ll have a bit more to say about the relationship between these two
perspectives at the end of this article, and I hope to explore theWilsonian perspective in depth
later in this series.

There were several books I found helpful in the process of putting this article together,
especially Peskin and Schroeder’s An Introduction to Quantum Field Theory, Gerald Folland’s
Quantum Field Theory: A Tourist Guide for Mathematicians andMichel Talagrand’sWhat Is a
Quantum Field Theory? A First Introduction for Mathematicians. I am very grateful to Jordan
Watkins for his helpful comments on an earlier version of this article.

2 TwoMore DiagramGames
Beforewecanembarkonour journey,weneed to say a couplemore things about the relationship
between Feynman diagrams and scattering amplitudes. Recall that our method for computing
scattering amplitudes goes through the LSZ formula. The formula—which is valid as long as
all themomenta are distinct— is

out〈><+1, . . . , ><+; |>1, . . . , ><〉in =
(−7 )<+;
/ (<+;)/2

<+;∏
9=1
(>29 − `2)�̃ (<+;) (>1, . . . , >< ,−><+1, . . . ,−><+;),

where ` is themass of the particle and / is the constant that appeared in the relationship we
found between the interpolating field and the one-particle state. (Specifically, this relationship
was 〈> |q (0) |Ω〉 = / 1/2, but this won’t matter much going forward.) In particular, recall that this
means that �̃ (<+;) has a pole at 0 in the variables>27 − `2.

2.1 Proper Diagrams
The Feynman rules we discussed last time give a method for computing �̃ (<+;) . Since we’re
about to dig into some concrete computations, it will be helpful to turn this into amethod for
computing the scattering amplitudes directly. This will have a couple of side benefits as well:
it will mean we don’t have to think about the pole in �̃ (<+;) , and it will reduce the number of
Feynman diagrams that we need to worry about.

Recall that the value of every connected Feynman diagram contains a delta function forcing
the sum of the incoming momenta to be equal to the sum of the outgoing momenta. Since
�̃ (<+;) is a sum of diagrams, this delta function will appear in the scattering amplitude as well.
It will be nice to have some notation which gets rid of it: let’s write

out〈><+1, . . . , ><+; |>1, . . . , ><〉in = (2c)4X ©­«
<∑
7=1

>7 −
;∑
8=1

><+8
ª®¬
7M(>1, . . . , >< ;><+1, . . . , ><+;).

This functionM is sometimes called the invariant matrix element, and our goal will be to
rewrite the Feynman rules in a way that computesM instead of �̃ (<+;) . (The 7 multiplying it in
that equation is a convention which is sadly universal enough that I don’t think I can drop it.)
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It will also be helpful to have some notation for the quantity multiplying the delta function
in �̃ (<+;) itself. Let’s write

�̃ (<+;) (>1, . . . , >;+<) = (2c)4X
(
<+;∑
7=1

>7

)
� (<+;) (>1, . . . , >;+<).

(UnlikeM, this notation is not standard and we won’t use it after the present discussion is
finished.)

BothM and� (<+;) should be thought of as functions on the subspace of (R4)<+; where
the relevant sum of momenta vanishes. (Otherwise the preceding equations would not specify
the values of the functions off of this subspace.) In particular, we’ll always write the parameters
to� (2) as> and −> .

Recall also that our Feynman rules included a factor of 7/(>29 −;2 + 7 n) for every external
leg withmomentum>9 . (An “external leg” is an edge connected to an external vertex.) At first
glance, this seems like it should be the source of the pole in �̃ (<+;) and exactly cancel the>29 −`2
in the LSZ formula, but not quite: one involves the parameter; from the Lagrangian, and the
other involves the particle mass `.

Luckily, there is an object in our Feynman diagram story that has a pole at >2 = `2: we
learned from our examination of the Källén–Lehmann spectral representation that

� (2) (>,−>) = 7/

>2 − `2 + 7 n + (continuous near>
2 = `2).

We can take advantage of this with the following trick.
Consider the following diagram:

>1

>3

>2 >4

Because of momentum conservation, themomentum of the edge with the red dotted line
passing through it has to be equal to the external momentum >1. I encourage you to use to
the Feynman rules to show that this diagram’s contribution to� (4) formally splits up as the
product of the two pieces on either side of the dotted line (where we leave out the +7 n’s from the
denominators of the propagators to save space):

(−7_)2
6

∫
34:1
(2c)4

∫
34:2
(2c)4

7

>21 −;2
7

:21 −;2
7

:22 −;2
7

(>1 − :1 − :2)2 −;2
7

>21 −;2

·
(

7

>22 −;2
7

>23 −;2
7

>24 −;2
(−7_)2
2

∫
349

(2c)4
7

9 2 −;2
7

(>1 + >2 − 9 )2 −;2

)

We could have done this same thing with any two-external-leg diagram to the left of the dot-
ted line, and the part in parentheses on the second line of this expression would be unchanged.
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So, if we consider the sum of all diagrams which arise in this way, we simply get

� (2) (>1,−>1) ·
(

7

>22 −;2
7

>23 −;2
7

>24 −;2
(−7_)2
2

∫
349

(2c)4
7

9 2 −;2
7

(>1 + >2 − 9 )2 −;2

)
.

The second factor is just the value of the diagram to the right of the dotted line, except without
the contribution from the external leg withmomentum>1. (This contribution isn’t present in
the second factor because it’s taken care of by the� (2) factor.)

If we do the same thing with the other three legs, we end up with a factor of� (2) (>9 ,−>9 )
for each leg, together with a factor that corresponds to the middle part of the diagram. The
process of taking a diagram and removing the largest possible two-external-leg subdiagrams
from each external leg is called amputating the diagram, and the “middle part” that is left over
after performing the amputation is called a proper diagram.

Let’s write % (>1, . . . , >< ;><+1, ><+;) for the sum of the values of all proper diagrams with <
incoming and; outgoing external legs with the givenmomenta. (Like� , this notation is made
up, so don’t try to find it in other sources!) By convention, % includes neither the contributions
from the external legs nor the delta function. The upshot of the preceding discussion is that

� (<+;) (>1, . . . , >< ,−><+1,−><+;)
= � (2) (>1,−>1) · · ·� (2) (><+; ,−><+;) · % (>1, . . . , >< ;><+1, ><+;).

Because we don’t include the contributions from the external legs in % , the pole is now
entirely contained in the� (2) factors. If we thenmultiply by the factors of>29 − `2 in the LSZ
formula, this will exactly cancel the pole in each� (2) , and the term in� (2) that’s continuous
near>2 = `2 will vanish. I encourage you to verify that the final conclusion ends up being that

7M(>1, . . . , >< ;><+1, . . . , ><+;) = / (<+;)/2% (>1, . . . , >< ;><+1, ><+;).

In other words, we can compute 7M by summing over all proper diagrams— that is, all dia-
grams that can’t be amputated nontrivially—where each diagram is assigned a value according
to the following rules:

• Label each external leg with the corresponding incoming or outgoingmomentum.

• For each internal vertex, include a factor of −7_.
• Introduce new variables 97 for each internal edge, orienting them however you want, and
include a factor of 7

9 2−;2+7 n .

• Usingmomentum conservation at each vertex, eliminate asmany 97 ’s as possible, writing
them as linear combinations of the other momenta, until the number of free momentum
variables is equal to the number of loops in the diagram.

• For each remaining internal momentum variable 9 , introduce an integral
∫

349
(2c)4 .

• Take the limit limn→0+ and divide by the symmetry factor.

Here are two examples of proper diagrams with the values they’re assigned by our new rules
(again with the +7 n’s omitted):
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>2

9

>1 + >2 − 9

>3>1

>4
=

(−7_)2
2

∫
349

(2c)4
7

9 2 −;2
7

(>1 + >2 − 9 )2 −;2

>1

>1 + >2 − 9
>4

>2

9

>3

9 + : − >3: =
(−7_)3
2

∫
349

(2c)4
∫

34:

(2c)4
7

9 2 −;2
7

:2 −;2
7

(>1 + >2 − 9 )2 −;2
7

(9 + : − >3)2 −;2

2.2 One-Particle Irreducible (1PI) Diagrams
The other diagram trick we’re going to go over is about the two-point function itself. Recall yet
again that we have

�̃ (2) (>,−?) = (2c)4X (> − ?)
[

7/

>2 − `2 + 7 n + (continuous near>
2 = `2)

]
.

At least conceptually, this gives us a way to compute / and ` by summing over all diagrams
with two external legs and looking at the reciprocal of the result. While this does work, there is a
trick that simplifies this computation quite a bit.

Consider the following diagram:

This diagram can clearly be divided into three pieces, each separated from its neighbors
by a single edge. The key observation is that, by momentum conservation, the momentum
attached to each of these connecting edges (marked in red in the diagram) has to be the same as
themomentum on each of the outer edges. This means that, just like with the proper diagrams
we just examined, the value of this diagram splits up as a product consisting of one factor for
each subdiagram and an 7/(>2 −;2 + 7 n) for each connecting edge.

If you split up any diagram in this way as far as possible, the pieces will be what physicists
call one-particle irreducible or 1PI diagrams, that is, diagrams that can’t be disconnected by
deleting a single edge. (By convention, the diagram consisting of just a single edge is not 1PI.)
This inspires the following definition. We’ll write −7Σ(>2) for the sum of the values of all 1PI
diagrams with two external legs, where we don’t include the external propagators or the factor
of (2c)4X (> − ?). Physicists refer to Σ as the self-energy. I encourage you to convince yourself
that the preceding analysis implies that

�̃ (2) (>,−?) = (2c)4X (> − ?)
[
Δ + Δ(−7Σ(>2)Δ) + Δ (−7Σ(>2)Δ)2 + · · · ] ,
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where Δ = 7/(>2 −;2 + 7 n) is the propagator.
What’s nice about this expression is that it takes the form of a geometric series: we can

rewrite it as

�̃ (2) (>,−?) = (2c)4X (> − ?) 7

>2 −;2 + 7 n ·
1

1 − Σ(>2) 1
>2−;2+7 n

= (2c)4X (> − ?) 7

>2 −;2 − Σ(>2) + 7 n .

(Does this geometric series converge? It doesn’t actually matter for our purposes: we will only
ever be using this in perturbation theory, where we discard all termswhich contain a sufficiently
high power of_. I sometimes find it helpful to adopt the perspective that all equations involving
diagrams are equations of formal power series in _ rather than of series of numbers, which
makes questions of convergencemuch less important. More on this at the end.)

Comparing this to our earlier expression gives us a way to relate Σ directly to / and `:
equating the quantities multiplying the delta functions in our two expressions for �̃ (2) tells us
that

7

>2 −;2 − Σ(>2) + 7 n =
7/

>2 − `2 + 7 n + (continuous near>
2 = `2),

so if we take the reciprocal we learn that (discarding the +7 n’s from the propagator)

−7 (>2 −;2 − Σ(>2)) = >2 − `2
7/ + (>2 − `2) (continuous near>2 = `2) .

By plugging in>2 = `2 to Σ and its derivative, we can get rid of the need to know anything about
themysterious second term in the denominator: we simply learn that

Σ(`2) = `2 −;2

1 − Σ′(`2) = 1
/
.

This gives us a procedure for relating` and / to diagrams that is quite a bit simpler than the one
we started with! When we dig into the computation later in this article, this is what we’ll use.

3 Wick Rotation and Regularization Schemes
The programwe sketched above for extracting finite values from our Feynman diagrams had
two steps: first we will write each divergent integral as a limit of finite quantities, and then we
will express these finite quantities in terms of new,more physicallymeaningful parameters with
the hope that these new expressions will converge to something finite.

Let’s start by tackling the first of these steps. This part of the process is called regularization,
and we actually have a considerable amount of freedom in how exactly to carry it out. Such
a choice is called a regularization scheme, and we’ll go through several such schemes in a
moment to give you a sense of the diversity of options that are available here.

3.1 Wick Rotation
There is one feature that almost all regularization schemes share, though, so it’sworthdescribing
that first. All our integrals take place inR4, and the integrands are all invariant under Lorentz
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transformations. It would be considerably nicer to have integrands which are invariant under
the action of ($ (4), that is, under ordinary Euclidean rotations inR4.

This is mainly because, if we write 9 2 for the Lorentz norm of 9 ∈ R4 and |9 |2 for the
Euclidean norm, then {9 : |9 |2 ≤ @ 2} is compact while {9 : 9 2 ≤ @ 2} is not. An integral of
the form

∫
R4 3

49 5 (9 ) where 5 is a continuous ($ (4)-invariant function of 9 can be split into a
one-dimensional integral over |9 | and a three-dimensional integral over the 3-sphere of radius
|9 |, and the fact that the 3-sphere is compact means that that part of the integral will always be
finite.

We can transform our Lorentz-invariant integrands into ($ (4)-invariant ones bymeans of
a clever trick calledWick rotation. The idea is fairly simple. Writing 90 for the time component
of somemomentum variable 9 , we take advantage of the fact that the integrand is holomorphic
to rotate the contour we’re integrating 90 along from the real axis to the imaginary axis.

Specifically, because the propagators all look like 7/(9 2 −;2 + 7 n) and n is going to zero
from the positive direction, they have one pole in 90 just below the positive real axis and one
just above the negative real axis. The values being plugged in for 9 are all homogeneous linear
functions of themomenta, so if we rotate all the 90’s counterclockwise at the same time, we’ll
avoid the poles. You could formalize this using the fact that the integral along the following
contour is zero, together with an argument that the integrand decays fast enough tomake the
two arc-shaped pieces on the outside go to zero as the radius goes to infinity:

This counterclockwise rotation amounts to introducing, for eachmomentum variable 9 , a
new variable 9� where

(9�0 , 9�1 , 9�2 , 9�3 ) = (−790, 91, 92, 93),
and integrating over all 9� ∈ R4. (You’ll also get an extra factor of 7 from the fact that 349 =
7349� .) The propagator becomes

7

9 20 − 9 21 − 9 22 − 9 23 −;2 + 7 n =
7

−(9�0 )2 − (9�1 )2 − (9�2 )2 − (9�3 )2 −;2 + 7 n =
−7

|9� |2 +;2 − 7 n ,

and since the denominator now doesn’t vanish anywhere near the contour of integration we are
free to just let n go to zero and forget about it. We’ll see an example of all this being carried out
momentarily.

The propagators will include external as well as internal momenta, so in order for this
programtoworkwe’ll have toWick-rotate the externalmomentaaswell as the internalmomenta.
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Thismeans that, after we compute the value of the integral, we’ll have to analytically continue it
back to the original values of the external momentum variables with real rather than imaginary
time components. In practice, this usually just amounts to replacing every occurrence of |>� |2
with −>2, and occasionally using the fact that we are rotating >0 clockwise to pick the right
branch of a log or an <’th root. For more details, I recommend the discussion that starts on p.
195 of Folland’s bookmentioned in the introduction.

3.2 Regularizing with a Hard Cutoff
Probably the simplest regularization scheme is to introduce a so-calledhard cutoff. Thismeans,
after Wick-rotating, that we restrict each of our momentum integrals to a ball inR4 of radiusΛ.
This leaves us with an integral of a continuous function on a compact set, so the result is finite.
The resulting function ofΛwill then blow up asΛ goes to infinity. Physicists refer to this as an
ultraviolet divergence;Λ is referred to as an ultraviolet cutoff, and takingΛ to infinity is called
“taking the ultraviolet limit.” The name comes from the fact that largemomenta correspond to
high frequencies, and ultraviolet light is at the high-frequency end of the visible spectrum.

While this doesn’t happen forq4 theory, it’s also possible for Feynman integrals to blowup for
smallmomenta, resulting inwhat physicists call an infrared divergence. (This tends to happen
in theories withmassless particles, and if we discuss such theories later in this series we will talk
about why.) If your theory has infrared divergences and you’re doing hard-cutoff regularization,
you will also have to introduce a lower bound on the absolute value of yourmomenta, that is,
introduce an infrared cutoff n and restrict the integrals to the set {9 : n < |9 | < Λ}. Since q4

theory doesn’t have any infrared divergences, we’ll only worry about ultraviolet cutoffs from
now on.

As a quick example, let’s use a hard cutoff to compute a regularized value for this diagram,
sometimes called the “tadpole”:

9

=
−7_
2

∫
349

(2c)4
7

9 2 −;2 + 7 n

Our first step is to Wick-rotate. As explained above, this shakes out to replacing 9 2 with
−|9� |2 and 349 with 7349� . All together, our integral becomes

−7_
2

∫
349�

(2c)4
1

|9� |2 +;2 .

Now that the integrand is spherically symmetric, we can introduce the cutoff. If we restrict the
integral to the ball of radius Λ and switch to spherical coordinates, I encourage you to verify
that the result is

−7_c2
∫ Λ

0
3@

@ 3

@ 2 +;2 =
−7_c2
2

(
Λ2 +;2 log ;2

;2 + Λ2

)
.

(Note that 2c2 is the surface area of the unit 3-sphere inR4.) Because the value of this diagram
doesn’t happen to depend on the external momenta, we can skip the final step of analytically
continuing the external momenta back to values with real time coordinates.
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This of course blows up asΛ goes to infinity, which shouldn’t be surprising since the original
integral was divergent. Remember, though, that our goal is not to make the value of each
individual diagramfinite, but tomake the scattering amplitudes finitewhenwritten as functions
of more physically meaningful parameters. As we’ll see when we carry out the program inmore
detail below, this creates opportunities for the divergent parts of different diagrams to cancel,
leaving a quantity that approaches a finite limit as the cutoff is removed.

The hard cutoff is probably the simplest regularization scheme to think about, but it has
a pretty severe disadvantage from a computational perspective: once there are at least two
momentum variables in the integral, it’s basically impossible to write the result in closed form
as a function ofΛ. Because of this, for all but the simplest diagrams, hard-cutoff regularization
is basically never used to perform actual computations.

Other regularization schemes naturally involve other tradeoffs. We’ll go through a couple
otherpossibilities togiveyouasenseof theoptionsbefore settlingon the schemewe’reultimately
going to use.

3.3 Pauli–Villars Regularization
Pauli–Villars regularization is a regularization scheme where we replace the propagator with
a different rational function. We start byWick-rotating, which replaces each propagator (up to
factors of 7 we won’t bother keeping track of here) with 1/(|9 |2 +;2). Then, for some very large
Λ, we replace this propagator with

1
|9 |2 +;2 −

1
|9 |2 + Λ2 =

Λ2 −;2

( |9 |2 +;2) ( |9 |2 + Λ2) .

When |9 | � Λ, this expression is very close to the original propagator, but it decays like |9 |4
rather than |9 |2, so it stands a better chance of producing a convergent integral.

Because the Pauli–Villars expression for the propagator is very close to the original one
for small momenta, it can be useful to think of this as a variant of the hard-cutoff schemewe
described earlier where the contributions of large momenta are being suppressed gradually
rather than all at once. Unlike the hard-cutoff scheme, it’s possible in the Pauli–Villars scheme
to find closed forms for the regularized values of all the diagrams we’re about to consider.

But it’s still somewhat cumbersome from a computational perspective. One unfortunate
feature is that performing this transformation of the propagator might not be enough tomake
every diagram converge on its own, and it may be necessary to introduce a second Pauli–Villars
parameter Λ2 and transform the propagator again. Because of this (along with some other
subtleties involving gauge theories that won’t come up for us here) it’s become less popular than
the dimensional regularization scheme we describe below.

3.4 Lattice Regularization
Lattice regularization involves replacing space with the lattice (nZ)3 for some small distance
n and then taking the limit as n goes to 0. This n turns out to serve as an ultraviolet cutoff—
in general, a great rule of thumb is that problems at short distances correspond to problems
at highmomenta, and vice versa. Our field operators are then thought of as operator-valued
functions on this lattice — honest functions now, not distributions — which can introduce
some n’s into the formulas we derived in the last two sections. If we need an infrared cutoff, we
can additionally restrict to a large box with side length ! , where ! is an integer multiple of n.
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Back in the first article, we in fact needed to restrict our fields to a finite-volume box in
exactly this way to make sense of the free theory. We ended up having to subtract a quantity
from the Hamiltonian which was finite when the cutoff was present but which blew up when it
was removed. This is a particularly simple example of renormalization using an infrared cutoff,
one which only requiredmessing with the constant term in the Lagrangian.

One attractive feature of lattice regularization from a conceptual perspective, especially
when youuse both the ultraviolet and infrared cutoffs, is that you endupwith a quantumsystem
with finitely many degrees of freedom. This means, at least theoretically, everything takes place
in an ordinary Hilbert space, exactly like in ordinary quantummechanics, with none of the
ugly infinities that have plagued our story so far. Because of this, even when using another
regularization scheme, I sometimes find it helpful to picture lattice regularization whenever I
get confused about the physical meaning of somemathematical step in the renormalization
story.

Unfortunately, just like in the case of a hard cutoff, it’s not really feasible to use lattice
regularization to do much computationally, and it has the additional unpleasant feature of
breaking the Lorentz symmetry (or, after Wick-rotating, the ($ (4) symmetry). However, a
variant of this idea where time is also discretized ends up being very useful for doing numerical
computations. It’s an especially important tool for theories like quantum chromodynamics
where the perturbation-theoretic perspective we’re emphasizing in this series ends up not
producing very many usable results.

3.5 Dimensional Regularization
Dimensional regularization is the scheme we’re actually going to use for our renormalization
computations. The idea is to take advantage of the fact that, afterWick-rotating, all our integrals
are spherically symmetric, and this ends up meaning that we can generalize the expression
to a number of dimensions 3 other than 4. The resulting expression in fact ends up being an
meromorphic function of3 , and this function of3 serves as the regularized value of the diagram.

It shouldn’t be especially obvious that this procedure is well-defined. This is not the place to
go into a ton of detail: it would increase the length of the article substantially, and it’s already
explainedwell inother sources. I found thediscussion inSection7.3ofFolland’sbook tobenicely
written and amenable to amathematician’s sensibilities, and there’s also a careful exposition
in Section 4.1 of Renormalization: An Introduction to Renormalization, the Renormalization
Group, and the Operator-Product Expansion by John Collins. To get a deep understanding of
what’s going on, you’ll probably need to consult one of these other sources, but this shouldn’t
be necessary to follow the rest of this article.

But we can maybe make it a bit clearer in the context of an example, so let’s look at the
“tadpole” diagramwe examined earlier when discussing the hard cutoff. AfterWick-rotating, we
wrote the value of the diagram in the form

−7_
2

∫
349�

(2c)4
1

|9� |2 +;2 .

Now, let’s consider the same expression, but as an integral overR3 for arbitrary 3 :

−7_
2

∫
339�

(2c)3
1

|9� |2 +;2 .
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Regardless of the value of 3 , this integral is spherically symmetric, so we can switch to spherical
coordinates and reduce it to an integral over just the radial coordinate. We get

−7_
2

�3
(2c)3

∫ ∞

0

@ 3−1

@ 2 +;2 ,

where �3 = 2c3/2/Γ(3/2) is the area of the unit (3 − 1)-sphere inR3 .
This last expression gives us themeromorphic function of 3 mentioned earlier. Performing

the integral gives the value

−7_
2

2c3/2
(2c)3Γ(3/2)

;3−2

2 Γ(3/2)Γ(1 − 3/2) = −7_2
;3−2

(4c)3/2 Γ(1 − 3/2).

The fact that our original four-dimensional integral diverged is reflected in the fact that this
function has a pole at 3 = 4 arising from the factor of Γ(1 − 3/2): near 3 = 4, it looks like

−7_
2

;2

16c2
( 2
3 − 4 + log

;2

4c +W − 1 +$ (3 − 4)
)
,

whereW is the Euler–Mascheroni constant. As we’ll see when we dig into explicit computations
in the next section, the goal is to find a way for this pole to cancel with a pole from another
diagramwhen we rewrite everything in terms of our more physically meaningful parameters.

For diagrams that are more complicated than this one, it can take a bit more trickery to
write the integral in a form that we can apply this scheme to, but it’s always possible. Themost
important such trick, which we won’t go into, involves what are called Feynman parameters; if
you’re interested in learning how that works, I encourage you to check out Collins or Folland. In
this article, I will restrict myself to just telling you what the final expressions end up being.

While dimensional regularization ends up being pretty nice to use computationally, that
niceness comes at the cost of being quite a bit harder to interpret physically: it’s far from clear
what tomakeof the values of our integrals at non-integer values of3 , and it’s hard to tell a story in
which taking 3 to 4 is somehow like lifting an ultraviolet cutoff. While this lack of concreteness
is definitely a count against it, it is so much nicer computationally than the alternatives —
especially inmore complicated theories where it becomes desirable to have a regularization
scheme that respects the theory’s symmetries— that the tradeoff ends up being worth it.

4 Perurbative Renormalization
With our choice of regularization scheme in hand, let’s start renormalizing q4 theory. I think it’s
best at this point to actually get our hands dirty with some integrals; while we’ll have a lot to say
on amore abstract level soon, those theoretical considerations will almost certainly makemore
sense after you’ve seen an example of the type of computation they pertain to.

To illustrate the process, we’ll compute scattering amplitudes for two incoming and two
outgoing particles up to order _2. This means looking at the 4-point function �̃ (4) , but since we
also need to relate the parameters in the Lagrangian to ` and / , we’ll also need to examine �̃ (2) .

Aswediscussedearlier,wewant toexpress all our scatteringamplitudes in termsofphysically
measurable parameters, rather than the unmeasurable parameters; and _ that appear in the
Lagrangian, so we need to pick some parameters to use for this. The physical particle mass ` is
a natural replacement for;, but we need a replacement for _ as well.
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Since_ endsupattached to vertices in the Feynmandiagramof degree 4, wehave that, to first
order, 7M(>1, >2;>3, >4) = −7/ 2_mod _2. This suggests a way to pick a physically measurable
quantity _@ to use instead of _: we can use the value of a four-particle scattering amplitude
for some specific choice of incoming and outgoing momenta. A popular choice is to take
? = (`, 0, 0, 0) and declare that

−7/ 2_@ = 7M(?, ? ;?, ?).
Physically, you can think of the right-hand side as the limit of the scattering amplitude as the
velocities of the incoming and outgoing particles approach 0. We’ll call _@ the renormalized
coupling constant.

We have three equations that constrain the values of;, _, and / : the equation defining _@
that we just discussed, and the two equations relating ` and / to the self-energy Σ(>2) that we
discussed earlier. Since there are only finitely many Feynman diagrams that contribute to each
term in the power series for our scattering amplitudes, it would hypothetically be possible to use
these three constraints to explicitly solve for;, _, and / in terms of` and _@ , and then plug the
resulting formal power series into whatever scattering amplitude we’re interested in computing.
The hope would then be that, as we remove whatever regularization scheme we imposed at the
beginning of this process, the resulting functions of ` and _@ converge to something nice and
finite.

4.1 Rewriting the Lagrangian
While this method would work, there is a trick (sometimes called renormalized perturbation
theory) that makes it considerably nicer to perform the computation. It involves rewriting the
Lagrangian in a form that involves` and _@ directly, so that the values of the Feynman diagrams
canmore easily be expressed in terms of the variables we ultimately care about. Let’s see how
this works.

First, recall that the value of / depended on our choice of interpolating field q : we had
/ 1/2 = 〈> |q (0) |Ω〉, where |>〉 was a one-particle state. So if we define q@ = / −1/2q and use this
as our interpolating field instead, then its / will just be 1, which will meanwe don’t have to keep
track of the / ’s in our formulas for scattering amplitudes anymore.

This of course comes at the cost of introducing / ’s into the Lagrangian: we get

L =
1
2 ((mq)

2 −;2q2) − _

4!q
4

=
/

2 ((mq@ )
2 −;2q2

@ ) −
/ 2_

4! q
4
@

=
1
2 ((mq@ )

2 − /;2q2
@ ) −

/ 2_

4! q
4
@ +

X/

2 (mq@ )
2,

where X/ = / − 1. We’ll do a somewhat similar transformation to get ` and _@ to show up as
coefficients in the Lagrangian as well: if we set X;2 = /;2 − `2 and X_ = / 2_ − _@ , then we
can write

L =
1
2 ((mq@ )

2 − `2q2
@ ) −

_@
4! q

4
@ +

X/

2 (mq@ )
2 − X;

2

2 q2
@ −

X_

4! q
4
@ .

The final three terms are called counterterms, and the role they serve in the computation
will becomemore apparent when we dig into an explicit example in just a moment. It is worth
emphasizing rightnow—especiallybecause somemoreold-fashioned sources canbeconfusing
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on this point— that this is the same Lagrangian that we started with, just expressed in terms of
a different set of quantities than the ones we started with. We are not adding new terms to the
Lagrangian, just splitting apart the terms that were already there.

Recall that we extracted our Feynman rules in the previous article by dividing the Lagrangian
(after converting it to a Hamiltonian) into a “free part” and an “interacting part.” Now that
we have written the Lagrangian in this new form, we will perform this split differently, taking
1
2 ((mq@ )2 − `2q2

@ ) as the free part and the other four terms as the interacting part. This will
naturally result in a different set of Feynman rules. If you are interested, it’s a nice exercise to
trace through the original derivation of the Feynman rules and see how it changes; here I’ll
simply state what the new rules are.

The new terms correspond to new types of vertices that can be present in a diagram. In
addition to our familiar degree-4 vertex, which contributes a factor of −7_@ whenever it appears,
we get a second type degree-4 vertex carrying a factor of −7X_. There will also be a new degree-
2 vertex corresponding to the X/ and X;2 terms. (We could introduce two separate types
of vertices here, but it’s equivalent — and simpler — to consolidate them.) This vertex will
contribute a factor of −7 (X;2 − >2X/ ), where > is the momentum of either of the two edges
attached to it, which have to be equal by momentum conservation. The factor of>2 arises from
the fact that the corresponding term in the Lagrangian contains a derivative of the field operator.

We’ll draw the new vertices like this:

→ −7X_

→ −7 (X;2 − >2X/ )

Here are a couple examples of diagrams with these new types of vertices, whichmight make
the rules a bit clearer:

>2

9

>1 + >2 − 9

>3>1

>4
=

(−7_@ ) (−7X_)
2

∫
349

(2c)4
7

9 2 −;2
7

(>1 + >2 − 9 )2 −;2

>2

9 9

>4

>1

>1 + >2 − 9

>3

= (−7_@ )2
∫

349

(2c)4
(

7

9 2 −;2

) 2 7

(>1 + >2 − 9 )2 −;2 (−7 ) (X;2 − 9 2X/ )

4.2 Renormalizing to First Order
Now thatwe’ve rewritten our Lagrangian in this new form, we need away to nail down the values
of X_, X;2, and X/ . Like wementioned earlier, we have three equations at hand to determine
the values of these three parameters: the defining equation of _@ we just discussed, and the two
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equations relating the self-energy Σ(>2) to ` and / from our earlier discussion of 1PI diagrams,
which were Σ(`2) = `2 −;2 and 1 − Σ′(`2) = 1// .

After the reparameterization we just performed, our / is 1 and the coefficient on themass
term in our Lagrangian is equal to `2, and these two facts combine to make these equations
look particularly nice. I encourage you to verify that they end up in the form

7M(?, ? ;?, ?) = −7_@
Σ(`2) = 0
Σ′(`2) = 0.

These are called renormalization conditions. At any given order in perturbation theory,
there are only finitely many diagrams contributing to the left-hand sides of each of these equa-
tions. As long as we can explicitly compute a regularized value for every diagram that shows
up in this way, we can use our renormalization conditions to solve for X_, X;2, and X/ to any
order in perturbation theory, and we can then use these values to compute whatever scattering
amplitudes we’re interested in. This procedure is called perturbative renormalization.

As a warm-up, let’s start by working everything out to first order. The only proper diagrams
that could contribute terms of order _1@ to the four-point function are these two:

= −7_@

= −7X_

The renormalization condition specifying _@ tells us that, when we set all the momenta to ? ,
the sum of these diagrams should be −7_@ , i.e.,

−7_@ − 7X_ = −7_@ mod _2@ .

This just means that X_ is zero to first order in _@ , which shouldn’t be that surprising: we
essentially defined _@ so that this would happen.

Something slightly more interesting happens with the two-point function. The two 1PI
diagrams that contibute to the self-energy are:

=
−7_
2

∫
349

(2c)4
7

9 2 −;2 + 7 n

= −7 (X;2 − >2X/ )

(We could have included another diagram like the one on top but with a degree-4 countert-
erm vertex on the bottom, but that diagramwould contain a factor of X_, which we just learned
is zero to first order!)
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The diagram on top is the “tadpole” that we looked at in the last section. Our other two
renormalization conditions say that both the sum of these two diagrams and the derivative of
that sum should vanish after setting>2 = `2. This works out to

0 = Σ(`2) = −7
(
_@
2

`3−2

(4c)3/2 Γ(1 − 3/2) + X;
2 + `2X/

)
mod _2@

0 = Σ′(`2) = 7X/ mod _2@ .

From this, we conclude that X/ vanishes to first order, but that

X;2 =
−_@`3−2Γ(1 − 3/2)

2(4c)3/2 mod _2@ .

The only interesting thing about this expression for us will be the fact that it has a pole at 3 = 4
coming from the gamma function, which exactly cancels the corresponding pole in the tadpole.
(In fact, because the value of the tadpole happens not to depend on>2 at all, it cancels the entire
value, but that won’t generalize past this simple example, as we’ll seemomentarily.) Because
this pole ends up cancelling, the sum of the values of our two diagrams can be finite when we
send 3 to 4 even though each diagram individually isn’t.

4.3 Renormalizing to Second Order
To second order, the proper diagrams contributing to the four-point function are:

We won’t go through the computation of the dimensionally regularized values of the last
three diagrams here; if you’re interested, you can find this computation in Section 7.4 of Folland
or Section 10.2 of Peskin and Schroeder. Instead, we’ll just state the result. To do this, it will be
convenient to introduce theMandelstam variables

A = (>1 + >2)2, B = (>1 − >3)2, C = (>1 − >4)2.

The value of themiddle diagram turns out to be −7 (−7_@ )2+ (A ), where

+ (0) = Γ(2 − 3/2)
2(4c)3/2

∫ 1

0

3F

(`2 − 0F (1 − F))2−3/2 ,

and the other two are the same except with B andC in place of A .
Our renormalization condition then tells us that

−7_@ = −7 (_@ + X_ + (−7_@ )2 (+ (A ) ++ (B ) ++ (C)))mod _3@

when we plug in ? = (`, 0, 0, 0) for all four momenta. This makes the Mandelstam variables
equal to 4`2, 0, and 0 respectively, so we learn that

X_ = _2@ (+ (4`2) + 2+ (0))mod _3@ .
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For our present purposes, themost important feature of+ (0) is its behavior as3 approaches
4. If we define

, (0) =
∫ 1

0
3F log(`2 − 0F (1 − F)),

then near 3 = 4 we have

+ (0) = 1
32c2

( −2
3 − 4 −W + log(4c) −, (0)

)
+$ (3 − 4).

(TheW here is again the Euler–Mascheroni constant.)
This implies that our three new diagrams all take values that diverge as 3 approaches 4

due to that −2/(3 − 4) term. But, because this divergent term doesn’t depend on the external
momenta, it will cancel when we add on the contribution from the counterterm (that is, from
the second diagram). All together, we get that up to second order
7M(>1, >2;>3, >4) = −7 (_@ + X_ − _2@ (+ (A ) ++ (B ) ++ (C)))

= −7
(
_@ +

_2@
32c2 (, (A ) +, (B ) +, (C) −, (4`

2) − 2, (0))
)
+$ (3 − 4).

At thispoint, everything isniceandfinite, soweare free to let3 go to4,whichof course eliminates
the$ (3 − 4) stuff at the end.

This means that we have done the thing we set out to do at the very beginning: we’ve
shown that, if we write our scattering amplitude as a function of _@ and ` and hold these
two quantities constant as we let 3 approach 4, then (at least to second order) the scattering
amplitudes converge to something finite. Although we discussed this briefly at the outset,
it’s worth emphasizing here that in this setup our “unrenormalized” parameters _,;, and /
definitely do depend on 3 , and in fact they will blow up as 3 goes to 4. This definitely has some
implications for howwe interpret the Lagrangian we started with, and we’ll have a lot more to
say about this in the final section of this article.

We won’t go into asmuch detail about the other two counterterms, X;2 and X/ . If you were
interested in computing them to second order, the relevant 1PI diagrams would be:

As we saw in the first-order computation, our renormalization conditions would force X;2

to swallow up any divergences in the two-point function that are constant as functions of>2,
and X/ to swallow up any divergences that are proportional to>2; unlike in the first-order case,
here there actually is such a divergence for X/ to take care of, arising from the final diagram in
the list. If you’re interested in digging into this computation in detail, you can look at Sections
4.4 and 4.5 of Pierre Ramond’s Field Theory: AModern Primer.

Our four-particle scattering amplitude computationdidn’t actually requirefinding the values
of X;2 and X/ because there don’t happen to be any proper four-particle diagrams containing
the degree-2 countertermvertex that contribute termsup to secondorder. Suchdiagramswould
start to show up at third order, though. Here’s an example:
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Notice, though, that the values of X;2 and X/ are completely determined by looking at
the two-point function. So, once that computation has been done, the value of this diagram is
nailed down. That means we just have to hope that its value cancels with some other divergent
values from some other diagrams to leave us something that converges as 3 goes to 4. It’s not
especially obvious that this should always work out! That’s the question we’ll turn to next.

5 Does This AlwaysWork?
Now that we have that first computation under our belt, it’s worth saying some words about
why this procedure worked and to what extent we should expect it to generalize. Unlike a lot of
what we’ve done in this series up to this point, this corner of the quantum field theory story is
one in which it’s actually possible to prove some rigorous theorems. We won’t go through any of
those proofs here, but my hope is that this quick overview will give you a sense of what can be
established and provide a foundation if you choose to explore the literature more thoroughly.

5.1 Power Counting andWeinberg’s Theorem
After we rewrote our Lagrangian in terms of our more physical variables ` and _@ , we ended up
with three counterterms: X;2, X/ , and X_. We saw that each of these countertems ended up
with a value which diverges as 3 approaches 4, but, because the renormalization conditions
forced the sum of all the relevant diagrams to be finite, this divergent value had to cancel the
divergences coming from the diagrams without counterterm vertices.

Specifically, because the degree-2 counterterm vertex contributes −7 (X;2 + >2X/ ) to its
diagram, we should expect X;2 to take care of divergent values fromdiagramswith two external
legs that are constant as functions of >2, and X/ to take care of those that take the form of a
constant times>2, where> is the external momentum. And, since the degree-4 counterterm
vertex contributes −7X_, we should expect X_ to take care of divergent values arising from
diagrams with four external legs that are constant as functions of the external momenta.

In light of this, a good first question to ask is if we can tell whether the value of a diagram
diverges just from looking at the diagram— that way, we can try to determine whether all the
divergences that arise are of the type that can be cancelled by our counterterms.

Suppose we have a diagramwith D internal vertices, 4 internal edges, and : = 1 − D + 4 loops.
(For themoment, we’ll restrict to the case where the diagram has no counterterm vertices.) The
value of the diagramwill be an integral over : four-dimensional variables of a rational function
of degree −24 , since each edge contributes a propagator of degree −2. In order for the integral
to converge, therefore, we at least need 4: − 24 < 0. (The exception to this is if : = 0, in which
case there is no integral, so the value of the diagram is always finite.)

This procedure is called power counting, and the quantity 4: − 24 is called the superficial
degree of divergence of the diagram, often written as� . The preceding discussion implies that
if� ≥ 0, then the integral definitely diverges. The converse is not true, of course: the integral∬
(1 + F2)−123F3G obviously diverges, since the integrand doesn’t depend on G , even though

the degree of the integrand is much less than 2. A similar phenomenon can happen when a
Feynman diagram contains a divergent subdiagram, as in this example:
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Here we have 4 = 5 and : = 2, which gives� = 4: − 24 = −2, but the value of this diagram
clearly diverges, since the loop on the top will contribute a factor of

∫
349
(2c)4

7
9 2−;2+7 n , which has

no chance of converging.
In this example, while the diagram as awhole has a negative superficial degree of divergence,

it contains a subdiagram which doesn’t. (Formally, the “subdiagrams” are the diagrams that
arise as connected components after deleting somenumber of edges from the original diagram.)
Happily, it turnsout that this is theonlywayournaivecriterioncan fail: a result calledWeinberg’s
Theorem states that the integral arising from a Feynman diagram converges if and only if the
superficial degrees of divergence of it and all its connected subdiagrams are negative. Talagrand
has a nice discussion of Weinberg’s Theorem in Section 15.2 if you’re interested in learning
more.

For q4 theory, we can turn this into a fairly simple criterion. Since each external leg is
connected to one internal vertex, edge internal edge is connected to two, and each internal
vertex has degree 4, wehave 4D = 24 +<, where< is the number of external legs. We can therefore
compute that

� = 4: − 24 = 4(1 − D + 4 ) − 24 = 4 − <.
The only superficially divergent diagrams are therefore the ones with 2 or 4 external legs. (It’s a
simple graph theory exercise to show that it’s impossible for a diagram to have 1 or 3 external
legs.)

5.2 SomeWords about Divergent Subdiagrams
This is a hopeful conclusion: the only superficially divergent diagrams in our theory are exactly
theones that our countertermsare equipped tohandle. (Ifwehad founda superficially divergent
diagram with six external legs, for example, we might have been in trouble: we don’t have
a counterterm vertex with degree 6, so it’s hard to see how that divergence could ever get
cancelled.) But we should say a bit about the other case that Weinberg’s Theorem leaves us
with: why should be expect our procedure to handle superficially convergent diagrams with
divergent subdiagrams?

In the computation we did earlier, we saw examples where a divergence was cancelled by a
diagram consisting of just a counterterm vertex connected directly to the external legs. In fact,
essentially the same thing happens whenever a diagram contains a divergent subdiagram. For
example, consider the following two diagrams:
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We showed in our first-order computation that the divergence in the “tadpole” diagram
wound up being cancelled to first order in _@ by the X;2 counterterm. You can use this fact
along with the Feynman rules to show that the same cancellation happens to fourth order in _@
between the two diagrams pictured here. (You shouldn’t have to evaluate either integral to do
this; just write out the integrals corresponding to each one and add them, grouping together
as many terms as possible. There’s really no substitute for working out this computation out
yourself, so I strongly encourage you to take some time and do it!)

The same thing will in fact happen in general: if the divergence in some diagram is cancelled
by a counterterm vertex, then the same cancellation will occur whenever that diagram appears
as a subdiagram of a superficially convergent diagram. Because of this, what we’d want to show
is that, as long as the shapes of the superficially divergent diagrams match the counterterm
vertices as they do here, all the divergences arising from all divergent Feynman diagrams end
up getting absorbed by the counterterms after we impose our renormalization conditions.

As youmight imagine, the combinatorics involved in proving this get quite intricate. For
example, what if there are two divergent subdiagramswhich partially overlap, or if one divergent
subdiagram contains another? While we won’t prove it here, it’s perhaps comforting to know
that there is actually a theorem to the effect that this all works out.

It’s called the BPHZ Theorem, and its proof works by giving a procedure for splitting up
the sum of the values of the diagrams, both with and without counterterms, into a sum of
integrals, each of which separately converges as the cutoff is removed. The procedure requires
splitting up each counterterm as a sum inwhich each term corresponds to a nested sequence of
divergent subdiagrams. If you’re interested in the details of how all this works, the best source
I’ve encountered by far is Part IV of Michel Talagrand’sWhat Is a Quantum Field Theory.

(There is oneother questionhereworth touching on: wemaynowknow that the superficially
divergent diagrams all have the right number of external legs to be cancelled by our countert-
erms, but how do we know that they have the right dependence on the external momenta? This
issue is also taken care of by the BPHZ story, but the following loose heuristic might be helpful.
Because of the form the propagator takes, if you take the derivative of a Feynman integral with
respect to one of the external momenta, the superficial degree of divergence will decrease by 1.
I encourage you to turn this into a quick argument that we should expect diagrams with four
external legs to contribute divergences that are at worst constant in the external momenta, and
that we should expect diagrams with two external legs to contribute divergences that are at
worst proportional to>2.)

5.3 Renormalizability
The upshot of the preceding discussion is that it is possible in q4 theory, at each order in
perturbation theory, to use our renormalization conditions to assign values to the counterterms
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that make all the divergences in all the scattering amplitudes go away. Because of this, we say
that q4 theory is “renormalizable.” It is possible in other quantum field theories for things to
not work out so nicely.

Suppose, for example, that we had instead chosen to look at q6 theory, the theory whose
Lagrangian is

L =
1
2 ((mq)

2 −;2q2) − _

6!q
6.

If we tried to repeat our power counting analysis here, we would run into a big problem: there
are superficially divergent diagrams with arbitrarily many external legs. For example, all of
these diagrams have superficial degree of divergence 4:

· · ·

Applying the procedure we used earlier would give us a degree-6 counterterm vertex which
could cancel the divergence from the first of these, but it would be no help for the rest. We
could imaginemodifying the Lagrangian to add terms with higher powers of q to take care of
them, but we’d need to end upwith a counterterm of the form X 6<q2< for every < ≥ 4, and each
counterterm would need to have its value nailed down by a corresponding renormalization
condition. In other words, extracting any predictions from our theory would require knowing
the values of infinitely many parameters!

All in all, for any given theory, this story can end in one of three ways:

• If there are diagrams with arbitrarily high superficial degrees of divergence, the theory
is said to be nonrenormalizable. This is the case for the q6 theory we just discussed,
and it means that it’s not possible to remove all the divergences using only finitely many
renormalization conditions.

• If there are infinitely many superficially divergent diagrams but the possible degrees of
divergence are bounded above, the theory is said to be renormalizable. In this case, as
the name suggests, it is possible to use only finitely many renormalization conditions to
assign finite values to all scattering amplitudes to every degree in perturbation theory. (In
the case of q4 theory, we needed three.)

• An even better case is if there are only finitely many superficially divergent diagrams. In
this case the theory is called superrenormalizable.

Aswe sawduring our analysis ofq4 theory, you can always determinewhether a given theory
is renormalizable by looking at its Lagrangian and doing a little graph theory. As a quick exercise,
I encourage you to show that if youmodify our theory by adding terms to the Lagrangian which
are polynomials in q , then it will only be renormalizable if every term you add has degree at
most 4. For more details, I recommend the discussion in Section 7.2 of Folland’s book.
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6 Taking Stock
We started this whole discussionwith the goal of extracting usable numbers fromq4 theory, and
with the perturbative renormalization procedure in hand we have essentially accomplished
this. There are a few issues it’s worth reflecting on at this stage.

6.1 TheMeaning of the Perturbation Series
We can use our perturbative renormalization procedure to compute scattering amplitudes as
functions of` and_@ to any desired degree in perturbation theory. I find itmost straightforward
to think of the output of this procedure as a formal power series in _@ ; because our theory
is renormalizable, the BPHZ theorem guarantees that each coefficient in this power series
converges to something finite as the cutoff is removed.

Our theory is a toy example that doesn’t really correspond to anything physical, but if it did,
we could use this to compare its results to experiment. We’d have tomeasure themass ` of our
particle and perform a low-momentum scattering experiment to determine the value of_@ ; with
those quantities in hand we’d be able to predict the value of any other scattering amplitude to
any desired degree in perturbation theory and compare it with a scattering experiment. Indeed,
computations verymuch like this have been performed for quantumelectrodynamics, resulting
in some of themost precise agreements between theory and experiment anywhere in science.

In the last article, we talked a bit about the question of whether the perturbation series
converges. The conclusion was that, while as far as I know there aren’t any theorems in this area,
no one really expects that it does. Nothing about the renormalization story we just finished
telling changes that conclusion. (Indeed, that conclusionwas really only about the renormalized
version of the perturbation series, since that’s the one with finite coefficients.)

This doesn’t actually havemuch of a practical effect on the way we use the series to predict
scattering amplitudes: in practice, one just stops computing when the number of Feynman
diagrams starts to become unmanageable and uses that as the prediction, and this works quite
well. But of course it does have a rather large theoretical effect! In what sense can we think of
our series as an approximation of anything if it doesn’t converge for any nonzero value of _@ ?
Does it have anymeaning at all?

The fact that results can be extracted from perturbation theory can bemade to line up so
well with experiment should be taken as evidence that there is something going on behind it.
And it is possible for the first few terms of a power series to provide a good approximation for a
function even if the series doesn’t actually converge at any nonzero value of its parameter, for
example if the series is an asymptotic expansion of the function, and that may very well be the
case for the perturbation series.

But it’s hard to imagine proving such a theorem as things stand now, because, for interacting
theories in four dimensions, we don’t have a rigorous description of the function that the series
would be an approximation of ! As we’vementioned repeatedly throughout this series, no one
has managed to build a complete mathematical theory which spits out a well-defined function
correpsonding to the scattering amplitudes we’re trying to compute.

(There has been some success building a rigorous nonperturbative model of q4 theory in
two or three spacetime dimensions. I know very little about how this goes, but the standard
reference is the bookQuantum Physics: A Functional Integral Point of View by James Glimm
and Arthur Jaffe if you are interested in learningmore.)

https://en.wikipedia.org/wiki/Asymptotic_expansion
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There is a program called perturbative algebraic quantum field theory, which is composed
of honest, rigorousmathematics, but as the name suggests its output is essentially the same
formal power series that we managed to build through our more physically oriented, hand-
waveymethods. As far as I can tell, doing better than this is seen within the field as an extremely
difficult open problem. As Urs Schreiber put it in the introduction to his “Introduction to
Perturbative Quantum Field Theory” (which is a decent reference if you’re interested in this side
of the story) building a rigorous, non-perturbative model of something like Yang–Mills theory
“might well be a 104 year problem”.

6.2 More on Renormalization Schemes
It’s also interesting to reflect on the role that the parameters in the Lagrangian played in our
renormalization story. We started with a Lagrangian that contained two free parameters,; and
_. Our perturbative renormalization procedure started by rewriting the Lagrangian in terms
of themore physically meaningful ` and _@ . This required introducing counterterms, which
are related to the original parameters via the equations X/ = / − 1, X;2 = /;2 − `2 and
X_ = / 2_ − _@ .

At each finite value of the cutoff, we can use our renormalization conditions to write X/ ,
X;2, and X_ in terms of` and _@ . But this required assigning them values which blow up as the
cutoff is taken to infinity; indeed, the fact that the divergences in our diagram integrals could
be “absorbed” by the counterterms in this way is the entire reason that the procedure actually
works.

This, in turn, means that / ,;, and _ are themselves assigned values that blow up as the
cutoff is taken to infinity. In particular, while the way we wrote our Lagrangianmade it look like
we were describing a family of quantum field theories parametrized by; and _, we can see
now that this is a misleading description of the situation: except for the free theories (where
_ = 0) none of the theories in the family we’re looking at correspond to finite values of; and _.

What they do correspond to is finite values of ` and _@ . I like to think of ` and _@ as a coor-
dinate system on a (hypothetical, not actually rigorously defined) two-dimensional space of
quantum field theories. From this perspective, the formal power series in _@ that we ended up
with can be thought of as a description of what this space looks like in an infinitesimal neigh-
borhood of the point with coordinates (`, 0), which correpsonds to a free theory of particles
withmass `. A rigorous description of what things look like further away from this point would
require building the object we just finished saying no one knows how to build.

Themeaning of ` and _@ was set by our renormalization conditions, and while the condi-
tions we chose were easy to interpret physically, there’s nomathematical reason we couldn’t
use other ones. In the terminology introduced earlier, this would mean choosing a different
“renormalization scheme,” and I like to think of this as a change of coordinates on this space of
theories we’ve been imagining. We could, for instance, have defined _@ using some other value
of the four-point function, even one where the input momenta aren’t physically possible for a
particle of mass `. (The procedure in the proof of the BPHZ theorem actually corresponds to a
renormalization schemewere we set the values of the two- and four-point functions at input
momenta which are all zero.)

There are a lot of renormalization schemes in use, and the one that I believe is the most
popular for doing actual computations is quite different from the one we described here. It’s
called the “modified minimal subtraction” scheme, basically always abbreviated MS, and it
works by specifying the functional form of the counterterms rather than directly specifying the
values of our renormalized parameters.

https://www.physicsforums.com/insights/paqft-idea-references/
https://www.physicsforums.com/insights/paqft-idea-references/
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As usual for computational issues like this, I recommend the discussion in Peskin and
Schroeder, where they introduce MS in Section 11.4. Near the end of that section, they also
discuss one of themore important reasons onemight want to change renormalization schemes:
the so-called “large logarithm problem” that arises when you use a renormalization scheme
where the parameters are set at low energies to compute scattering amplitudes at high energies.

6.3 The Role of Renormalizability
Regardless of the renormalization scheme you pick, our original Lagrangian with its poorly-
behaved parameters; and _ is really only a meaningful object after imposing a cutoff. You
can, if you like, picture an entire family of “cut-off Lagrangians,” one for each value of the cutoff,
each of which does have a well-defined (although cutoff-dependent) value of; and _; from
this perspective, our original Lagrangian is just a constraint on the form these can take. If our
Lagrangian is renormalizable, that means it’s possible to pick a renormalization scheme and
finitely many coordinates such that, when you write the scattering amplitudes in terms of these
coordinates, the coefficients of the resulting perturbation series converge to something finite as
we raise the cutoff to infinity.

For the first few decades of quantum field theory’s existence, it was seen as more or less
mandatory that the theories used to describe the fundamental interactions of physics be renor-
malizable. This was quite helpful in narrowing down the form of the Lagrangian, since renor-
malizability is a fairly strong constraint—we caught a glimpse of this in our brief discussion of
q6 theory above. Theorists were in fact able to find perturbatively renormalizable descriptions
of all the currently known fundamental forces other than gravity, resulting in the now-famous
StandardModel of particle physics.

(Renormalizability is, by the way, the main obstacle to constructing a sensible quantum
theory of gravity: the Lagrangian that gives rise to general relativity is not renormalizable, hence
the search for some other theory that might not suffer from this problem.)

More recently, though, a new perspective has arisen which partially rehabilitates the non-
renormalizable theories; this is the “Wilsonian” perspective mentioned in the introduction.
We’ll havemore to say about this later in this series, but we can say a bit about it now.

Nonrenormalizability is only a problem if you actually want to take the cutoff all the way
to infinity. As we’ll see when we explore this later on, leaving the cutoff large but finite is fine
if you are only interested in energies that aremuch smaller than the scale of the cutoff, and it
turns out that nonrenormalizable interaction terms in the Lagrangianmake contributions to
scattering amplitudes that shrink with the ratio between the particles’ energies and the cutoff.

In light of this, while nonrenormalizable theories are unsuitable asmodels of “fundamental”
physics that we expect to hold for arbitrarily high energies, they can be perfectly fine effective
field theories, that is, theories whose validity is constrained to some smaller range of energies.
In fact, I believe thedominant perspective in thefield is that the StandardModel itself is probably
an effective field theory, that is, that there is some other, yet-to-be-discovered model which
presumably includes gravity and to which the StandardModel is a low-energy approximation.

In fact, because general relativity models gravity as arising from the curvature of themetric
on spacetime, onemight suspect that any quantum theory that incorporates gravity will involve
some change to the structure of spacetime itself, andmay not even be a quantum field theory at
all. This is, I think, part of what might be behind some physicists’ cavalier attitude toward some
of the foundational issues we’ve talked about. If you’re willing to impose an ultraviolet cutoff,
everything is muchmoremathematically straightforward. By trying to take the ultraviolet limit
in away that leaves the geometry of spacetime intact, wemaybemaking some sort of conceptual
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mistake from the perspective of this hypothetical theory of quantum gravity. In other words, we
may be having somuch troublemakingmathematical sense of this limit because it’s just the
wrong limit to take.

We’ll have to leave theWilsonian story here for now. It will bemuch easier to explain it in
detail once we’ve been acquainted with the functional integral perspective on quantum field
theory. That’s where we’ll turn next.
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