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QuantumMechanics I -
Foundations

Nic Ford

1 Introduction
This article is the second in a series about physics for amathematically trained audience. I’m
going to make an attempt to write an introduction to quantum mechanics. I remain a bit
apprehensive about putting this article out in the world. Due, I think, to a combination of its
unintuitiveness and its centrality to themodern conception of physics, this is a difficult subject
to write well about. There aremany overly confusing presentations of it out there and I hope
this onemanages to at least rise above the worst of them.

This article has fewer mathematical prerequisites than the previous one; Hilbert spaces are
probably themost complicatedmathematical objectswe’ll be invoking. Still, Iwill be referencing
some aspects of the Hamiltonianmechanics story, so it will be helpful if you’ve read it.

This is a topic that’s been tackledmany times bymany different people, including several
writing for an audience of mathematicians. Some books in this category that I found useful
when writing this are:

• Quantum Theory, Groups and Representations: An Introduction by Peter Woit (available
on his website)

• QuantumMechanics for Mathematicians by Leon Takhtajan

• Lectures on Quantum Mechanics for Mathematics Students by L. D. Faddeev and O. A.
Yakubovskĭı

• Quantum Field Theory: A Tourist Guide for Mathematicians by Gerald Folland

• Quantum Theory for Mathematicians by Brian Hall.
I am thankful to Jake Levinson for reading and commenting on anmany drafts of this article.

Basically nothing in this article is original, including the complaint at the top about how badly
this topic is usually explained. Still, after thinking about how to teach this material a couple
times I’ve arrived at a presentation that I like, and I hope it’s helpful to you.

2 States and Observables
In order for a physical theory to produce predictions about the results of experiments and
not just be a pile of math, it’s necessary to specify some correspondence between the theory’s
mathematical objects and the world’s physical objects. There aremany ways you could imagine
doing this, but a common scheme in physics is to pick out three things:

http://nicf.net/2018/02/15/physics-for-mathematicians.html
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• The states of the theory, which represent all the information about a physical system that
could affect the result of an experiment.

• The observables, which represent experiments that could be performed on a physical sys-
tem. We’ll think of observables as specifically referring to an experiment whose outcome
is a single real number.

• A function that takes a state and an observable and produces a probability measure on
R, which we’ll interpret as giving the result of performing the corresponding experiment
when the system is in the corresponding state.

In some theories, this probability measure will always just be concentrated at one point,
that is, the theory predicts a definite result for any possible experiment. Such a theory is called
deterministic. This is true, for example, of the description of classical mechanics given in the
previous article in this series. In that theory, youmight use points in phase space as your states
and real-valued functions on phase space as your observables. Then the result of performing
experiment 5 in state A is just given by a probability measure that has all its mass at 5 (A ).

Even in classical physics it can be very useful to extend this picture to allow for nondetermin-
ism. This is very useful, for example, in thermodynamics, where we’d like to be able to describe
states in terms of quantities like temperature and pressure. Knowing the temperature of, say,
some gas sitting in a chamber tells you something about the positions andmomenta of all of its
constituent molecules, but it’s completely infeasible to imagine knowing all those numbers.

So it’s crucial when thinking about these sorts of things to allow states that don’t specify
definite positions andmomenta for everything. One way to do this is to expand the set of states
to include probability measures on phase space, leaving the definition of observables the same.
If 5 is an observable and ` is the measure on phase space corresponding to some state, the
probability of seeing a result in some set � ⊆ R is then given by `( 5 −1 (� )). So if F and G were
two points in phase space, wemight imagine a state which has a 1

3 probability of being F and a
2
3 probability of being G ; measuring 5 in this state would then yield 5 (F) with probably 1

3 and
5 (G ) with probability 2

3 .
There are a lot of popular descriptions of quantummechanics out there that sound sort of

like this, and it has left a lot of people with the impression that quantummechanics is what you
get when you take classical mechanics and add in this sort of nondeterminism. But while the
theory I just described can be useful, it’s not quantummechanics.

In particular, in statistical classical mechanics, it’s possible to interpret a state as merely
representing uncertainty on the part of the experimenter; if you knew what the state “really
was,” then the theory would predict a definite outcome for every possible experiment. This
is not true in quantummechanics. In fact, for every quantum state A , there is an observable
which, whenmeasured against A , does not yield a deterministic result. We’ll havemore to say
about this and other differences once we have formal definitions in front of us.

The definitions of states and observables in quantummechanicswill definitely seem strange
and arbitrary if you’ve never seen them. Nonetheless, I think it’s easier to see everything laid out
at once and then spend some time talking about how they’re usually interpreted, so that’s what
we’ll do here.

The state of a quantummechanical system is described in terms of a complex Hilbert space
H . (As a reminder, this is a complex vector space with a positive definite Hermitian inner
product which is complete under the correspondingmetric.) We’ll callH the state space of the
system. We’ll always write the inner product as 〈·, ·〉, and use the convention that it’s linear in

http://nicf.net/2018/02/17/hamiltonian-mechanics.html
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the second coordinate and conjugate-linear in the first. For now, we’ll only worry about the case
whereH is finite-dimensional.

A pure quantum state is then a point in the projective space PH . That is, it’s a nonzero
vector inH , except that we regard two vectors as representing the same state if one is a scalar
multiple of the other. We’ll often go back and forth between a vector inH and its equivalence
class inPH without much comment.

It’s important to emphasize from the start that the physical interpretation of vectors inH
is very different from the way we interpreted points in phase space when discussing classical
physics. You shouldnot imaginepointsmoving around inH in away that somehowcorresponds
to objects moving around in space.

Thepicture to have inmind instead is a bitmore abstract. To anyphysical quantity youmight
measure, there is an associated orthonormal basis ofH . (This is strictly true only in the finite-
dimensional case.) For example, imagine that a particlemight be found in any one of< different
places depending on the outcome of some experiment. Every vector in the basis corresponds
to one possible outcome of the corresponding experiment, so in keeping with our convention
that observables correspond to experiments that produce a single real number as output, we
also attach a real number to each basis vector. Whenever you perform this measurement, you’ll
see one of those real numbers as the result. In our example, wemight say the outcome of the
experiment is 7 if the particle is found in the 7 ’th location.

The vectors in the orthonormal basis should then be interpreted as the states in which our
experiment will have a definite outcome: if our basis is D1, . . . , D< and our chosen numbers
are _1, . . . , _< , then performing this measurement on a system in state D7 will yield _7 with
probability 1. In general, if we have some state

A = U1D7 + · · · + U<D< ,

the outcome of the experiment will be _7 with probability |〈D7 , A 〉|2/〈A , A 〉 = |U7 |2/〈A , A 〉. Note
that these numbers necessarily sum to 1, and that multiplying A by a nonzero scalar leaves
them unchanged. For this reason, we usually use our freedom to rescale the vector to pick a
representative for A of norm 1, in which case the probability is just |U7 |2.

In light of all this, we define a quantum observable to be a self-adjoint map � : H →
H . Recall that the Spectral Theorem says that every such map has an orthonormal basis of
eigenvectors with real eigenvalues. So, at least when all the eigenvalues are distinct, specifying
� is the same as specifying an orthonormal basis ofH , up to scalar multiples, together with a
real number for each basis vector.

We’ll also allow operators with repeated eigenvalues. The corresponding experiment has
fewer possible outcomes than the dimension of the state space and doesn’t distinguish any of
the states in an eigenspace from each other. The rule in general, then, is that the probability of
seeing the result _7 whenmeasuring � in state A (chosen to have norm 1 as before) is given by
〈%7 A , %7 A 〉, where%7 is the orthogonal projection onto the_7 eigenspace. In particular,measuring
any state in that eigenspace will produce _7 with probability one.

Note that if the state space is <-dimensional, then any experiment can only have at most <
different outcomes. So to talk about physical quantities like position andmomentum, which
can take on infinitely many values, we’ll needH to be infinite-dimensional. Themathematical
setup there is slightly more complicated, and we’ll discuss it in more detail in a later section.
But there are many physical systems—we’ll see a few examples over the course of this article—
which really are described by a finite-dimensional state space, and therefore really do display
this sort of discreteness.
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We should take amoment to note the similarities and differences between this picture and
the statistical classical mechanics I told you we were going to reject. If we only ever considered
one observable and we only measured it once, then the two pictures would be very similar. You
would have your orthonormal basis D1, . . . , D< of states in which your experiment has a definite
outcome, and any other state could be interpreted as just a probability distribution over the
D7 ’s. In fact, if we had some general state A = U1D1 + · · · + U<D< , then we could only observe
the numbers |U7 |2, and so our description would even be somewhat redundant, since I could
multiply any U7 by a unit complex number without changing anything. In particular, it would
be possible to imagine that a state like A just reflects ignorance on the part of the experimenter,
and that the state “really is” one of the D7 ’s.

The thing that prevents this picture fromworking is that we are not restricted to worrying
about just one observable at a time. As tempting as it is to think of A as merely representing
uncertainty over which D7 you have, this interpretation doesn’t make sense when considering
an observable in which A itself is an eigenvector. When you do this, you see that if the state is A
we’ll get the same result every time, but if the state is “some D7 , I just don’t knowwhich,” then
we’ll get some other result with probability 1 − |U7 |2.

This is also the reason why it’s important to keep track of the individual U7 ’s and not just
their squared absolute values. These U7 ’s are normally called amplitudes. Due to the scalar
symmetry on our state vectors, we are free tomultiply all the amplitudes by the same number
without affecting anything physical. But the relative phase of two different amplitudes— the
ratio U7/U8 —definitely does matter.

This is all probably easiest to see in anexample. Electronshave aproperty called “spin”which
behaves inmany ways like angular momentum. In particular, like classical angular momentum,
the spin depends on which axis youmeasure it around; one way to perform this measurement
is to shoot the electron through amagnetic field aligned with the axis in question and see which
way it moves.

The spin of an electron can be described using a two-dimensional state space, meaning in
particular that anymeasurement of spin can only have two possible outcomes. We call one of
these outcomes “spin up” and the other “spin down.” (There is away to use an orientation onR3

to assign these labels in ameaningful and consistent way, but for the purposes of this example
they’re just arbitrary labels.) We’ll write (↑H ) and (↓H ) for the states in which the electron has
spin up or spin downmeasured around the H-axis. It then turns out that:

(↑F ) =
1
√
2
((↑H ) + (↓H )); (↓F ) =

1
√
2
((↑H ) − (↓H ));

(↑G ) =
1
√
2
((↑H ) + 7 (↓H )); (↓G ) =

1
√
2
((↑H ) − 7 (↓H )).

Note they only differ from each other in the coefficient on (↓H ) and that each up state is
orthogonal to its corresponding down state. This second fact reflects the fact that they are
mutually exclusive outcomes from the same experiment. But the inner product of two of these
spin states corresponding to different axes is 1

2 . This tells you that, for example, if you start with
an electron which you know has spin up around the F axis, you are equally likely to get either
result whenmeasuring its spin around the G axis.

This last fact is why the relative phases of amplitudes is actually important. Even though
they look the samewhenmeasuring spin around the H axis, (↑F ) and (↑G ) are not the same state,
because they don’t look the same whenmeasuring spin around the F axis. We would have been
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free to pick a representative for (↑G ) that differs by a global factor, like 1√
2 (7 (↑H ) − (↓H )), but the

fact that those two coefficients differ by a factor of 7 does actually carry physical information.
Taking a linear combination of states, then, can’t just represent uncertainty on the part of

the experimenter about the “true state” of the particle. One way to see this in our example is to
note that (↑H ) = 1√

2 ((↑F ) + (↓F )) and (↓H ) =
1√
2 ((↑F ) − (↓F )). When we plug these back into the

definition of (↑F ) we see that the coefficients on (↓H ) cancel out, something that obviously can’t
happen with classical probabilities.

So amplitudes are not the same thing as classical probabilities. This is, again, the essential
difference between quantummechanics and the statistical classical mechanics we rejected
earlier. Saying the state is (↑F ) does not just mean “it could be (↑H ) or (↓H ) and I don’t know
which,” and the way to tell the difference is tomeasure the spin around the F axis, which will
always give you the same answer.

So, to summarize:
• To every physical systemwe associate a Hilbert spaceH . The states are elements of the
projective spacePH .

• An observable is represented a self-adjoint operator � : H → H . The possible results of
performing the experiment are given by the eigenvalues of �.

• Suppose the system is in a state corresponding to a vector A ∈ H , which wemay choose
to have norm 1, and wemeasure the observable �. If _7 is one of the eigenvalues of � and
%7 is the orthogonal projection onto the corresponding eigenspace, then the outcome of
the experiment will be _7 with probability 〈%7 A , %7 A 〉.

There is one element of the standard presentation of quantummechanics that is not in this
list; I want tomention it only briefly now and postpone amore detailed discussion until the end
of this article. It might have occurred to you to wonder what happens after ameasurement is
performed. Suppose wemeasure the spin of an electron around the H axis and see that it’s spin
up. Does that mean that it’s now in the state (↑)H , or is it still in whatever state it was in before
themeasurement?

The very surprising answer given by the standard formulation of quantummechanics is the
former: if youmeasure the observable � in the state A and get the result corresponding to _7 ,
the state is from then on the projection %7 A . This process is what’s being referred to in many
popular accounts of how “quantummechanics means that measurement changes the result of
the experiment.”

Whatever philosophical interpretation onemight want to add on top of this, it does in fact
accurately predict the results of experiments. For example, if wemeasure our electron’s spin
around the H again after seeing spin up the first time, we’ll also see spin up the second time. A
philosophically cautious readermight want to treat this merely as an operational account—
measurement causes the state to behave as if it has been projected onto the corresponding
eigenspace— and hold off on worrying about what’s “really happening.” We’ll briefly discuss
some of themore popular attempts to answer this question in the final section of this article.

3 The Schrödinger Equation
The quantum description of how physical systems evolve in time has a lot in commonwith the
classical one presented in the Hamiltonianmechanics article. It will be helpful to understand
that story in order tomake sense of this one.

http://nicf.net/2018/02/17/hamiltonian-mechanics.html
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It’s not possible to formally derive the rules of quantummechanics from the rules of classical
mechanics in a completely rigorous way. (In fact, wanting to do so is somewhat backwards;
quantummechanics is supposed to be themore fundamental theory!) What we can do, though,
is take the classical description and, starting from our description of quantum states and ob-
servables, try to find quantum analogues of the parts of the classical story that give rise to the
physics. In fact, whenwe do this, we’ll see that the resulting recipe is actuallymore fundamental
to the quantum setup than its classical counterpart.

The classical state space is phase space— the cotangent bundle of configuration space—
andclassical observables are real-valued functions onphase space. Using thenatural symplectic
structure on phase space, we can turn any classical observable 5 into a Hamiltonian vector
field - 5 , which gives rise to a one-parameter group of symplectomorphisms that we called a
Hamiltonian flow. For example, we saw that the one-parameter group of spatial translations in
some direction arose from applying this procedure to themomentum observable in that same
direction.

Our quantum states live in a projective Hilbert spacePH , so the analogue of a symplecto-
morphism should be an automorphism ofPH . The analogue of a Hamiltonian flow, then, is
a one-parameter group of projective unitary maps, that is, a homomorphism from R to the
projective unitary group %* (H) = * (H)/{H� : |H | = 1}. Because R is simply connected,
such amap can always be lifted to a continuousmapR →* (H), and it turns out that when
H is finite-dimensional, we can always choose this lift to be a homomorphism. (The simply-
connected restriction does matter, though. In quantum mechanics it is often important to
consider symmetries ofPH that come from groups that aren’t simply connected— ($ (3) is a
very prominent example— and in this case not every projective unitary representation will lift
to a unitary one. In this setting it is the projective representations which are important, whether
or not they lift.)

So in fact we can restrict our attention to one-parameter groups of unitary maps onH .
A map � : H → H is self-adjoint if and only if 4 7� is unitary, though, so up to a factor of 7
our observables are already infinitesimal generators of unitary maps. (If this fact is new to
you I encourage you to prove it.) The family of symmetries we associate to � will be given by
*� (B ) = 4−7�B /ℏ. The choice of sign in the exponent is arbitrary, but this choice is pretty standard.

Thenumberℏ is a fundamental physical constant calledPlanck’s constant. It’s about 1.055×
10−34 Joule-seconds; we’ll say more about its presence here in a bit.

In fact, any one-parameter group* (B ) of unitary operators which is strongly continuous,
meaning limB→0* (B )D = * (0)D for all D , is of the form 4 7�B for some self-adjoint operator �.
So if we impose this restriction on our families of symmetries we get a complete quantum
version of the correspondence between symmetries and observables that we had classically:
the observable � is associated the infinitesimal symmetry −7�/ℏ, which we integrate to get the
one-parameter family of symmetries 4−7�B /ℏ, and every strongly continuous one-parameter
group of symmetries arises in this way.

As in the classical picture, we declare that there is a special observable� , which we still call
theHamiltonian and which still should be interpreted as the total energy, whose flow gives the
actual dynamics of the system. That is, the way states evolve in time is through the rule

k (B ) = 4−7�B /ℏk (0),

or equivalently
3k

3B
= − 7

ℏ
�k.
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This second equation is called the Schrödinger equation, and it is the quantum analogue of
Hamilton’s equations.

Classically, we can define the Poisson bracket {5 , 6 } = l (- 5 , -6 ), which tells us how the
values of 5 change as wemove along 6 ’s Hamiltonian flow using the rule 3 5 /3B = {5 , 6 }. Note
that when we write the expression “3 5 /3B ” we are treating the observable 5 as a quantity that’s
evolving in time. Physicists have names for these two perspectives: when the states evolve in
time and the observables don’t we are using Liouville’s picture; when the observables evolve in
time and the states don’t we are usingHamilton’s picture.

While Hamilton’s picture is maybe a bit more abstract, the two pictures are completely
equivalent: they are two different ways of answering the question “what happens if I run time
forward by this amount and then perform this measurement?” Classically, when observables
are just functions, the translation is straightforward: if qB is the map on phase space that moves
time forward by B , we can simply write 5B (F) = 5 (qB (F)).

If*� (B ) is a one-parameter group of unitary operators, then the way to evolve a quantum
observable through time is to conjugate it, that is, �B =*� (−B )�*� (B ). There are many ways to
see this; one is to note that the way to get data out of a quantum observable is tomeasure the
inner product 〈q, �k〉, wherek is the state beingmeasured and q is one of the eigenvectors of
�. But

〈*� (B )q, �*� (B )k〉 = 〈q,*� (−B )�*� (B )k〉,

so we see that*� (−B )�*� (B ) is the observable corresponding to running time forward by B and
thenmeasuring �. (Note that we used the fact that*� (B ) is unitary here.) We can use this to get
the quantum analogue of the Poisson bracket. We define

{�, �}ℏ =
3

3B

����
B=0
(*� (−B )�*� (B )) =

3

3B

����
B=0
(4 7�B /ℏ�4−7�B /ℏ) = − 7

ℏ
(�� − ��).

Just as in the classical case, if {�, �}ℏ = 0we conclude that� is preserved by� ’s flow and vice
versa. This happens if and only if � and � commute. In particular, we get a quantum version of
Noether’s theorem: an observable is preserved by the laws of physics if and only if it commutes
with the Hamiltonian.

In summary:

• A classical observable 5 has an associated vector field - 5 , and integrating the vector field
gives a one-parameter family of symplectomorphisms. A quantum observable � gives
rise to the infinitesimal symmetry −7�/ℏ, which is integrated to give the one-parameter
family of unitary maps*� (B ) = 4−7�B /ℏ.

• Conversely, given a one-parameter family of unitary maps 4�B for some skew-Hermitian
operator � , the associated observable is 7ℏ� .

• Classically, the Poisson bracket can be used to determine how the flow corresponding
to one observable affects another — we have 3 5 /3B = {5 , 6 } when we move along 6 ’s
Hamiltonian flow. The quantum analogue is given by {�,�}ℏ = (−7/ℏ) [�,�].

• In both settings there is a privileged observable� called the Hamiltonian whose flow tells
us how the system evolves in time.

There are a couple more points I’d like to make about this story before concluding this
section. First, the correspondence between observables and infinitesimal symmetries of the
state space is “baked in” to the quantum story more deeply than in the classical story: to go
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between observables and symmetries one just multiplies or divides by 7ℏ. In fact, the factors of
7 and ℏwe introduced are less fundamental than the story I told heremight suggest.

We could replace ourHermitian operators� with the skew-Hermitian operators 7� and have
an equivalent story about states and observables; the eigenvalues would then be purely imagi-
nary instead of real, which is why I imagine this choice isn’t the one physicists make. But there
is a sense in which the skew-Hermitian operators are themoremathematically fundamental
objects: they are the elements of the Lie algebra u(<), and if we use themwe can eliminate all
the factors of 7 that appear in this section.

Also, ℏ is, in a certain sense, less essential than it might be. It has units of energy times time,
which is exactly what’s needed to make the exponent unitless in*� (B ) = 4−7�B /ℏ. Physicists
often work in a system of units in which ℏ is equal to 1. From this perspective, the value of ℏ isn’t
really a separate fact about the universe; it’s merely a conversion factor from units of energy to
units of inverse time, with the same status as the factor of 100 used to convert centimeters to
meters. If we choose to adopt this perspective— and combine it with the use of skew-Hermitian
operators for observables— then quantum observables and their corresponding symmetries
are literally the samemathematical objects.

4 Position andMomentum
The last aspect of the story that we haven’t talked about is the treatment of position andmomen-
tum. While I might have introduced this earlier, I wanted to wait until now because it will seem
more natural in light of the analogy with classical Hamiltonianmechanics from the last section.

The theory of unbounded operators on an infinite-dimensional Hilbert space—which both
the position andmomentum observables will turn out to be— is one of the less well-covered
aspects of functional analysis. Going through this story in detail herewould take us too far afield,
but I’ll mention a couple of the relevant aspects as they pertain to position andmomentum
when they come up. There will probably be an article in this series in the future about the
infinite-dimensional spectral theorem, but if you see this sentence instead of a link to it then I
haven’t written it yet.

Suppose we want to consider the observable corresponding to the position of a particle
moving inR. (Following the classical case, we’ll write ? for the coordinate onR and call the
observable& .) Since the result of measuring the particle’s position can be any real number,
there’s no way to represent this situation with a finite-dimensional Hilbert space. In the finite-
dimensional case, every state has an associated amplitude for each possible outcome themea-
surement can have, and taking the squared absolute values of these numbers gives a probability
distribution on this set of possible outcomes.

For our position observable, we need a continuous version of this story: to every state we
associate a complex-valued function k on R (up to a global scalar multiple) which we call
thewavefunction of the state. The values of the wavefunction should be interpreted slightly
differently from our amplitudes from earlier, because if |k (?) |2 is going to give a probability dis-
tribution onR, then we should interpret its values as probability densities, not probabilities. So
the probability that the particle will be found in somemeasurable set � is given by

∫
�
|k (?) |23? ,

provided we’ve used our freedom to multiply by scalars to ensure that
∫
R
|k (?) |23? = 1. De-

spite this distinction, it’s common to also refer to the values ofk as amplitudes (no one says
“amplitude densities”) and I will do so as well.

So at least as far as position is concerned, we can take our state space to be !2 (R). (Recall
that this is the space of measurable functions 5 : R → C for which

∫
| 5 |2 is finite, where we
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identify two functions if they agree except on a set of measure zero. The inner product is given
by 〈5 , 6 〉 =

∫
5 6 .) The values ofk serve the same role as the coefficients in a basis in which

the position operator& is diagonal. Since the value ofk (?) is supposed to be the amplitude
corresponding to the position ? , our diagonal operator shouldmultiply it by the corresponding
“eigenvalue,” which is ? . We therefore should take& to be themultiplication-by-? operator, that
is, (&k ) (?) = ?k (?).

Note that it is not the case for every k ∈ !2 that ?k (?) is in !2. We have to expand our
definition of “operator” to includemaps like& which are only defined on a dense subspace of
H . This subspace will be called the domain of the operator. It is probably not surprising that
there are quite a fewmathematical subtleties involved when worrying about operator domains.
For example, muchmore care needs to be taken with the definition of self-adjointness. We will
not worry about most of those issues here; I will leave them to the future article on the spectral
theorem.

One complication that arises here is that& doesn’t have any eigenvectors in !2 (R). Still,
physicists often speak as though it does, introducing theDirac delta function X (? − _) as the
eigenvector of& with eigenvalue_. The defining property of this fictional function is that taking
the inner product with it is the same as evaluating a function at _, that is,

∫
X (? − _)k (?)3? =

k (_). There is in fact mathematical machinery one could invoke to rigorously construct a
definition of a “generalized eigenbasis” for a self-adjoint unbounded operator, but it is also
fine to treat the delta function as just a cognitive crutch. It is possible to answer all the physical
questions that will matter to us here without ever having to expand a vector in terms of an
eigenbasis for& . Nothing of any physical consequence depends on whether the delta function
“really exists” or not.

How should we account for momentum? Following our intuition from the classical case,
momentumshouldbe theobservable corresponding to translation, that is, to theone-parameter
group*% (B ) defined by [*% (B )k ] (?) = k (? − B ). We see that

3

3B

����
B=0

k (? − B ) = − 3

3?
k,

so the infinitesimal generator of this unitary group is −3/3? . Using our recipe for building
observables from symmetries, we then see that our momentum observable is

% = −7ℏ 3

3?
.

(Alternatively, one can directly show that [4−B (3/3?)k ] (?) = k (? − B ).)
A first guess might have been, remembering how we passed from configuration space to

its cotangent bundle in the classical case, that we should introduce another coordinate and
use, say, !2 (R2) as the state space and let % just be themultiplication-by-> operator. But this
could not have been the answer if momentumwere still going to be related to spatial translation
in the same way. If& and % were both multiplication operators then they would commute,
which would mean that the symmetry corresponding to % — that is, spatial translation —
preserves position, which it of course doesn’t. Instead, even when considering both position
andmomentum, the state space remains !2 (R), with % given by the formula above.

Just as& is “diagonal” as an operator on!2, we can “diagonalize”% using a Fourier transform.
We choose a convention for the Fourier transform that incorporates ℏ, setting

k̂ (>) =
∫

4−7>?/ℏk (?)3?.
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I encourage you to check for yourself that under this convention, we indeed have %̂k (>) =
>k̂ (>), and that the appropriate measure to use in> space— that is, the one that makes our
map unitary— is 3>/(2cℏ), so the probability of finding that the particle’s momentum is in the
set� is givenby

∫
�
| 5̂ (>) |23>/(2cℏ). It is useful to think of the Fourier transformas a continuous

analogue of a change of basis, from the “position basis” {X (? −?0) : ?0 ∈ R} to the “momentum
basis” {4 7>0?/ℏ : >0 ∈ R}, but again, remember that none of these functions actually lives in !2.

This highlights a fact about position andmomentum in quantummechanics that I found
confusing the first time I encountered it: knowing all the amplitudes for position — all the
complex numbersk (?)— is in fact enough information to completely specify the state, and
in particular the amplitudes for momentum. This is very different from the classical setting,
where position and momentum were two totally independent variables. This doesn’t mean
that knowing the probability distribution of positions— the real numbers |k (?) |2 — is enough;
there are different ways to pick the phase for eachk (?) and they’ll lead to different distributions
of momentum. But for a given distribution of positions, not every distribution of momenta is
achievable just by plugging in the right phases; the famous Heisenberg uncertainty principle,
which we discuss below, gives one limitation.

This whole story extends straightforwardly tomultiple dimensions. When dealing with an
<-dimensional configuration space, we use !2 (R<) as our state space and introduce position
operators (&7k ) (?) = ?7k (?) and momentum operators %7k = −7ℏ(mk/m?7 ). The Fourier
transform 5̂ (>) =

∫
4−7> ·?/ℏ 5 (?)3? moves us from the generalized basis that simultaneously

diagonalizes the position operators to one that simultaneously diagonalizes themomentum
operators, and the right measure to use inmomentum space is 3>/(2cℏ)< .

We can use this to write down our first quantum Hamiltonian. Recall that the classical
Hamiltonian for a particle moving in a potential was given by� = |p|2/2; ++ (q). The obvious
quantum analogue of this is simply the function we get by plugging in our expressions for %7
and&7 . When we do this, the resulting operator is given by

� = − ℏ
2

2;∇
2 ++ ,

where ∇2 =
∑
7 (m/m?7 )2 and + is the multiplication-by-+ (?) operator. The corresponding

Schrödinger equation is
7ℏ
mk

mB
= − ℏ

2

2;∇
2k ++k.

We’ll investigate a special case of this equation in some detail in the next section.
Thequestion of how to turn a classical observable into a quantumone is calledquantization.

There isn’t a general recipe for quantization that works in all cases, and in fact one probably
shouldn’t expect one: classical mechanics is a special case of quantummechanics, so specifying
the quantum version of a physical system should require providing strictly more information.
Themore one worries about issues like convergence and the domains of unbounded operators
the fuzzier the classical-quantum analogy becomes, and in general the best thing one can hope
for is to use the classical case as an intuition pump, like we did just now. But the question of
whether the resulting physics is correct is not something you can hope to formally derive just
from the knowledge that it’s true classically.
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5 SomeQuantum Phenomena
This article is not meant to be anything like a comprehensive treatment of quantummechanics.
Still, there are some topics whichmany readersmight have heard something about that it would
be a shame not to cover.

5.1 The Heisenberg Uncertainty Principle
The Heisenberg uncertainty principle is probably the thing that someone will have heard about
quantummechanics if they’ve heard nothing else. The form in which it’s commonly stated in
popular accounts is usually something like “you can’t know the position and themomentum of
a particle at the same time,” and it often comes with a story aboutmeasurement: measuring
the position precisely, for example, would involve hitting the particle with something really big,
which would destroy any information about its momentum. But this story is incomplete in a
couple ways; the uncertainty principle is bothmore general andmore fundamental than this
measurement story would suggest.

The uncertainty principle is a statement about statistics, so we need to briefly discuss how
to write down the relevant quantities using the formalismwe’ve developed here. First, suppose
we aremeasuring the observable � in the statek . I claim that, assuming we’ve chosenk to have
norm 1, the expected value of the result is given by 〈k, �k〉. Assuming the state space is finite-
dimensional for simplicity, expandk in terms of a basis of eigenstates of �, sayk =

∑
7 U7D7 .

Then
〈k, �k〉 =

∑
7

〈k,_7U7D7 〉 =
∑
7

_7 |U7 |2,

which is indeed the expected value, since |U7 |2 is the probability of getting _7 as the result of the
measurement. Note that, as in classical probability, the expected value is a linear function of �.

The uncertainty principle concerns the variance of an observable. If E� is the expected
value of �, the variance of �, which we’ll write f2

�
, is defined as the expected value of (� − E�)2.

(Since there’s only going to be one state under consideration, we’ll often not include it in the
notation, but it still definitely affects all the quantities we’re talking about.)

We’re now ready to state the theorem. Consider two observables � and � that might be
measured in the statek . Then

f2
�f

2
� ≥

1
4 |〈k, [�,�]k〉|

2.

There are a couple of ways to prove this; I’ll sketch one here. Write �̄ = � − E� and note that
[�,�] = [�̄, �̄]. Then since � and � are self-adjoint, the right-hand side can be rewritten

1
4 |〈�̄k, �̄k〉 − 〈�̄k, �̄k〉|

2 = |Im〈�̄k, �̄k〉|2 ≤ |〈�̄k, �̄k〉|2 ≤ ||�̄k | |2 | |�̄k | |2

which gives us the result, the last inequality following from Cauchy-Schwarz.
In the special case where [�,�] is a scalar, this result gives us a bound on the product of the

variances that’s independent ofk . This happens for position andmomentum: if [&k ] (?) =
?k (?) and % = −7ℏ(3/3?), then a quick computation shows that [&,% ] = 7ℏ� , whichmeans
that our bound becomes simplyf2

&
f2
%
≥ 1

4ℏ
2. (Once again, a very careful exposition would have

to get around issues of operator domains, but this result does in fact survive.)
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The position-momentum version of the uncertainty principle is, again, the one that’s talked
about themost often, but I think a lot of the popular accountsmiss the point a little bit. It’s often
described in terms of a limitation on one’s knowledge— themore information you get about
the position, the less you have about themomentum. But, at least if you take the identification
of physical states with elements of the Hilbert space seriously, the problem is deeper than that:
it’s not that you can’t get the knowledge about what the position ormomentum “really is,” it’s
that the information isn’t there to be had in the first place. There is no state at all for which the
variances in position andmomentum violate that inequality.

5.2 Entanglement
The examples we’ve discussed so far, if we’ve been explicit at all one way or the other, all involve
just one particle. Suppose we want to extend the story to multiple particles. If the state of
one particle is described by a Hilbert spaceH and another byH ′, how do wemodel a system
consisting of both particles considered together?

Probably the easiest way to convince yourself of the right answer is to imaginemeasuring
some observable � for the first particle and some observable � for the second. Again assum-
ing everything is finite-dimensional for simplicity, thesemeasurements each have associated
orthonormal bases D1, . . . , D< ofH andE1, . . . ,E; ofH ′. Since we couldmeasure both observ-
ables, one for each particle, the combined state space should have one basis vector for each
pair of outcomes and the corresponding probabilities shouldmultiply.

The Hilbert space that accomplishes this is simply the tensor productH ⊗H ′, which comes
with the inner product given by 〈D ⊗E,D ′ ⊗E ′〉 = 〈D,E〉〈D ′,E ′〉. This is also the answer to the
question of how tomodel two independent properties of the same particle. For example, as we
mentioned near the beginning of this article, the spin of an electron can be represented as an
element of (the projective space of) a two-dimensional Hilbert space. The state of an electron
moving in space, then, ought to live inP(!2 (R3) ⊗ C2).

For the rest of this subsection, we’ll focus on the simplest nontrivial example, the tensor
productH ⊗H whereH is two-dimensional. We’ll pick a basis 41, 42 ofH ; you can think of two
electrons, except that we are only keeping track of the spin. (Under this interpretation, 41 and 42
are the spin-up and spin-down states around some chosen axis.)

Some states come from taking two states A and A ′ fromH and considering them together—
that is, they describe a system in which the first particle is in state A and the second is in state A ′.
These states correspond to the pure tensors A ⊗ A ′ and they’re called separable. Any other state
is called entangled; a good example is the state 4 = 1√

2 (41 ⊗ 41 + 42 ⊗ 42).
What happens if wemeasure one of the particles when the pair of them is in a state like 4?

Supposewehaveanobservable� onH forwhich41 and42 are eigenvectors, saywitheigenvalues
−1 and 1 respectively. We can form an observable onH ⊗ H by tensoring � with the identity;
� ⊗ � can be interpreted as measuring � just for the first particle. Any vector of the form 41 ⊗E
will be an eigenvector of � ⊗ � with eigenvalue −1, and similarly for 42. In particular, if we
measure � ⊗ � in state 4 , then the state collapses to 41 ⊗ 41 with probability 1

2 and to 42 ⊗ 42
with probability 1

2 . Therefore, if we thenmeasure � for the second particle we will always get
the same result we got for the first particle, even if the twomeasurements are performed at the
same time while the particles are very far apart.

On its own this doesn’t have to be so surprising. One could imagine that the process that
produced the entangled particles simply either put them both in state 41 or both in state 42
with equal probability. If this were true, then when wemeasure one we are simply discovering
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which of these two things happened, which allows us to deduce the state of the other particle.
But, as we saw at the very beginning when we attempted to interpret amplitudes this way, this
interpretation doesn’t work. There is a famous example, called the CHSH game after the initials
of the people who first wrote it down, that provides a good reason why not.

Alice and Bob will play a game. Each of them is assigned a separate room containing a coin
and a button, but they have a chance to agree on a strategy before they’re separated. When
they’re ready to play, they’ll go to their appointed rooms and flip the coin. After that, they’ll have
a chance to either press the button or not.

The goal is as follows: they want exactly one of them to press the button if and only if both
coins land heads. (So if at least one coin lands tails, then they want either to both press the
button or both not press the button.) Notice that each player has only four strategies to choose
between (the only choices are what to do if the coin lands heads and what to do if it’s tails) so
there are 16 strategies total. It’s not difficult to check that nomatter what they do, they can’t do
better than a 3

4 chance of winning. Furthermore, choosing their strategy randomly can’t help:
this just amounts to randomly choosing one of the 16 possible strategies according to some
probability distribution, and randomly choosing among strategies that can’t winmore than 3

4 of
the time can’t result in a strategy that winsmore than 3

4 of the time.
Now suppose that Alice and Bob have a pair of particles that they’ve placed into the state 4

we discussed above. Then if Alice takes one of the particles and Bob takes the other, they have
one more thing they can do after the coin has been flipped: each of them can choose which
basis to use to measure the particle they have. This turns out to be enough to win the game
with a probability greater than 3

4 . I’ll describe a strategy that does this below, but youmight also
enjoy trying to come up with one on your own before reading on.

It will be useful to have some notation to talk about these bases. Write {4U1 , 4U2 } for the basis
you get by rotating {41, 42} counter-clockwise by U, so

4U1 = (cosU)41 + (sinU)42,

and
4U2 = (− sinU)41 + (cosU)42.

This notationmakes it easy to take inner products: we get that

|〈4U1 , 4
V
1 〉|

2 = |〈4U2 , 4
V
2 〉|

2 = cos2 (U − V)

and
|〈4U1 , 4

V
2 〉|

2 = |〈4U2 , 4
V
1 〉|

2 = sin2 (U − V);
one quick way to see this is to rotate both bases by −V so that one of them is {41, 42} and the
other is {4U−V1 , 4

U−V
2 }.

(If we think of these states as representing spins of electrons, then it turns out that we can
assign these labels so that the basis {4U1 , 4U2 } corresponds tomeasuring the spin about the axis
in the F-H plane formed by rotating the H axis counter-clockwise by 2U. In particular, note
that when U = c , we get {−41,−42}, which is the same pair of states as {41, 42} and so had
better correspond to the samemeasurement! We won’t actually need to invoke this physical
interpretation at any point in this section, though.)

Say Alice has the first particle and Bob has the second. If Alice’s coin lands heads, she’ll
measure her particle in the basis {4c/41 , 4

c/4
2 }. If she gets tails, she’ll use {41, 42}. Bob will use

{4−c/81 , 4
−c/8
2 } for heads and {4c/81 , 4

c/8
2 } for tails. In each case, they’ll press the button if and

only if themeasurement resulted in the first basis vector.
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I encourage you to check that if you use one of these rotated bases to construct the state 4
under discussion, the result is the same. That is,

1
√
2
(4U1 ⊗ 4U1 + 4U2 ⊗ 4U2 ) =

1
√
2
(41 ⊗ 41 + 42 ⊗ 42).

Therefore, if the particles start in the entangled state 4 and Alice measures her particle in some
basis {4U1 , 4U2 } and sees, say, 4U2 , then the two particles together end up in the state 4U2 ⊗ 4U2 . In
particular, after this happens, the second particle is in the state 4U2 , so if Bob nowmeasures his
particle in the basis {4 V1 , 4

V
2 } for some other V , the probability that he sees 4 V1 is |〈4U2 , 4

V
1 〉|2, and

likewise for 4 V2 .
So here are the possible outcomes:

Alice’s coin Bob’s coin % (same) % (different)
H H cos2 (3c/8) sin2 (3c/8)
H T cos2 (c/8) sin2 (c/8)
T H cos2 (c/8) sin2 (c/8)
T T cos2 (−c/8) sin2 (−c/8)

The winning outcome is “different” in the top row and “same” everywhere else, so in every
case, they have the same probability of winning, namely cos2 (c/8) = sin2 (3c/8) = 1

4 (2 +
√
2) ≈

0.8536. This beats the upper bound of 34 we came up with from before!
It’s very tempting to assume that performing ameasurement on, say, an electron is just a

way of extracting some information about that electron that was already present before the
measurement was performed— after all, this is more or less howwe think of measurements
in classical physics. In this picture, a complete description of the state of an electron would
include, for each axis, whether that electron has spin up or spin down around that axis. The fact
that the element ofP(C2) thatwe’ve been calling the state doesn’t determine all this information
would just mean that our description is incomplete. If this were true, then entanglement would
not be that strange: all it wouldmean is that for each axis, either both electrons have an “up” in
the corresponding entry in their lists or both have a “down.” It would be nomoremysterious
than someone rolling a die and then writing the result on two different slips of paper.

The CHSH game is one of many ways of demonstrating that this simply can’t be true. If each
electron contained a predetermined answer to every possible measurement, then bringing the
entangled electrons with them could not possibly have helped Alice and Bob win this game. It
would be no better than carrying in notebooks that they filled out together beforehand; since
they’re allowed to coordinate on a strategy ahead of time anyway this clearly adds nothing. We
are forced to conclude that quantummechanics can’t be reduced to a local hidden variable
theory—a description in which the result of measuring something about a particle is always
determined by some preexisting information contained just in that particle.

The existence of entangled particles like these is one of themore straightforwardly weird pre-
dictions of quantummechanics. Nonetheless, they really do exist, and experiments essentially
like the one described here have been performed.

5.3 The Harmonic Oscillator
I’ll conclude this section with one example that actually involves analyzing Schödinger’s equa-
tion for an honest physical system: the harmonic oscillator. We analyzed the one-dimensional
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classical harmonic oscillator in the Hamiltonianmechanics article; recall that its Hamiltonian
was given by � = >2/2; + 9?2/2 where ; is the mass of the particle and 9 is the “spring
constant” which controls the strength of the force pulling the particle toward the origin.

Following our quantization recipe, our quantumHamiltonian is

� = − ℏ
2

2;
32

3?2
+ 92?

2.

As always, states evolve according to the Schrödinger equation:

3k

3B
= − 7

ℏ
�k.

A common strategy for studying the dynamics of a quantum-mechanical system is to first find
all the eigenvectors of� . If we canmanage to expand some state in terms of eigenvectors of
� , then the dynamics are completely straightforward, since ifk� is an eigenvector of� with
eigenvalue � we know thatk� (B ) = 4−7�B /ℏk� (0).

To analyze the the corresponding Schrödinger equation, it will be convenient to introduce a
bit of notation. We will write l =

√
9/; and ?̃ =

√
;l/ℏ? , which lets us write

� =
1
2ℏl

(
− 32

3?̃2
+ ?̃2

)
.

We introduce a new, non-self-adjoint operator on !2 (R):

0 =
1
√
2

(
?̃ + 3

3?̃

)
, 0∗ =

1
√
2

(
?̃ − 3

3?̃

)
(We are again ignoring all issues involving operator domains. If the fact that 0 is not self-adjoint
is surprising, recall that 3/3?̃ is skew-adjoint.) A straightforward computation shows that we
can write� = ℏl (0∗0 + 1

2 ) and that [0, 0∗] = 1.
From this, it’s possible to conclude the key fact that made us want to introduce these opera-

tors in the first place. Suppose we have an eigenvectork of 0∗0 with eigenvalue <. (It will then
be an eigenvector of� with eigenvalue ℏl (< + 1

2 ).) Then

0∗0 (0∗k ) = 0∗ (0∗0 + 1)k = (< + 1)0∗k,

that is, 0∗k is an eigenvector of 0∗0 with eigenvalue < + 1. A similar argument shows that 0k
is an eigenvector with eigenvalue < − 1. We call 0∗ the raising operator and 0 the lowering
operator. Furthermore, if we define

q0 (?̃) =
(;l

cℏ

) 1
4
4−?̃

2/2,

we get that 0q0 = 0, and therefore q0 is an eigenvector of 0∗0 with eigenvalue 0. (The factor out
front is just there tomake q0 have norm 1.)

If we take q< = (0∗)<q0/
√
<!, this gives us an eigenvector of 0∗0 for every nonnegative

integer. (The
√
<! is again there for normalization.) To complete our quest for the eigenvectors

of� , we just need to show that there aren’t any others. In fact, something stronger is true: the
q< ’s are an orthonormal basis of !2 (R). Checking that they’re orthogonal is the sort of thing it’s
better to do yourself than to have shown to you, but it’s worth sketching the proof of why they
(topologically) span !2.
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First, we can write q< a bit more explicitly. One can see by induction that, for some polyno-
mial�< of degree <, wemust have

q< (?̃) =
1

√
2<<!

(;l

cℏ

) 1
4
�< (?̃)4−?̃

2/2.

The�< ’s are calledHermite polynomials and are interesting in their own right, but the only
fact we’ll need about them is that�< has degree exactly< and that therefore they span the space
of polynomials in ?̃ .

Suppose 〈q< , 5 〉 = 0 for every <. Then we in fact have that 5 is orthogonal to 6 (?̃)4−?̃2/2 for
every polynomial 6 and, by continuity, also orthogonal to 4 7>?̃4−?̃2/2 = ∑∞

7=0
(7>?̃)9
9 ! 4−?̃

2/2 for any
real> . But that means ∫

5 (?̃)4−?̃2/24 7>?̃3?̃ = 0,

that is, the Fourier transform of 5 (?̃)4−?̃2/2 is zero. So 5 (?̃)4−?̃2/2, and therefore 5 itself, are zero
almost everywhere, so 5 is the zero vector in !2 as desired.

So we’ve shown that the only eigenvalues of 0∗0 are nonnegative integers <, meaning that
the only eigenvalues of� areℏl (< + 1

2 ), and each eigenspace is one-dimensional. This situation
is, once again, very different from anything that happens classically. The energy levels of the
harmonic oscillator are discrete; they only come in whole lumps of size ℏl. The fact that this
can happen is yet another fundamental difference between classical and quantummechanics,
and in fact it’s this phenomenon that gave rise to the name “quantum” in the first place.

6 SomeWords AboutMeasurement
Once one has gotten used to everything else, probably themost confusing thing about quantum
mechanics is the central role that seems to be played bymeasurement and probability. For two
statesD andE , we interpreted |〈D,E〉|2 as theprobability that,whenyouperformameasurement
corresponding an observable for which D is an eigenvector on a system in the stateE , you see
the corresponding eigenvalue as a result. This is called the Born rule. I referred briefly at
the end of Section 2 to the standard story about what happens next: that if you perform this
measurement and get the eigenvalue corresponding toD , then the state of the system isD instead
ofE from then on. This hypothetical process, where the state suddenly jumps to D the instant
themeasurement is performed, is called collapse.

I call the process hypothetical because it is far from universally accepted within the field
that collapse as described here literally happens. In fact, although I’m not a physicist myself,
I think it’s fair to say that it’s theminority opinion. The question of what tomake of all this is
called themeasurement problem and it’s a surprisingly thorny one. This is not an article on
interpretations of quantummechanics— Imight write one in the future— but I still think it’s
worth talking a little bit about what some of the positions are. (I am sure adherents of one or the
other of the theories I’m about to describe will find something wrong with these descriptions;
I’m far from an expert. If this is you, sendme an e-mail and I’ll maybe correct it.)

It’s possible to take the collapse picture completely literally and assert that there is some-
thing about themeasurement process that causes the initial state to collapse to themeasured
eigenstate. One posits thatmeasurement involves the interaction between the quantum system
and some separate, macroscopic object which behaves classically, and that it’s this interac-
tion that causes collapse. The earliest attempts tomake sense of the predictions of quantum
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mechanics took this form, and something like it is what’s commonly called the Copenhagen
interpretation, although this seems to be a term that different people tend to use to refer to
large class of slightly different ideas.

Copenhagen-like interpretations are the ones that tend to “leak out” into discussions of
quantummechanics aimed at the general public, sometimes being used to justify somewhat
garbled attempts at a sort of quantummysticism. One of themost exuberant is probably the
2004movieWhat the Bleep DoWe Know!? in whichMarlee Matlin learns that water has feelings
and the universe is made of consciousness, all because of quantummechanics.

It’s not really fair to blame the Copenhagen interpretation for the loopy ways it’s interpreted,
but I think it does have some problems as a fundamental description of reality. It seems to
assert that there is a qualitative difference between quantum objects and classical objects and
that only the latter can cause collapse. The idea that a bright line like this exists in nature
seems implausible and it immediately raises a bunch of ridiculous-sounding questions. What
determines how big an object has to be before it’s allowed to perform ameasurement? If it’s
just slightly smaller, does it behave totally differently? Moreover, large objects are of course
made out of large numbers of small objects for which quantumphenomena are very real indeed.
Experiments have been run that observe interference effects — that is, situations in which
amplitudes can be seen to cancel out — in objects quite a bit larger than an electron (here
is an example involving large molecules) and there’s no evidence that the rules of quantum
mechanics are going to suddenly stop working when an object reaches a certain size. There
is another, broader problem: time evolution in quantummechanics is unitary, but projecting
onto a subspace is very much not unitary, so for a theory of quantummechanics to include
literal collapse, it has to be “bolted on” to the rest of the laws of physics rather than somehow
following from them.

There are other types of so-called “objective collapse theories” to choose from that try to
get around the issue of when an object is macroscopic enough to be allowed to perform a
measurement; for example, theGhirardi-Rimini-Weber theory includes spontaneous random
collapses that happen at some universal frequency. Many of these have the interesting property
that, at least in principle, they’re testable: if collapse actually occurs in nature according to
some definite law then we ought to be able to design experiments that could notice. But so far,
no evidence has emerged to support anything like this, and even so there is still the aesthetic
complaint about having a theory with a unitary and a non-unitary component glued together.

There is another class of interpretations, though, that tries to do away with the concept of
collapse entirely. I’ll highlight two of them here, but there are manymore to choose from.

One, calledBohmianmechanics, posits that to describe theworld youneed two ingredients:
the wavefunction that we’ve discussed in this article that lives in a Hilbert space and evolves
according to the Schrödinger equation, together with the position of every particle. There is an
extra law of physics called the “guiding equation” that explains how the wavefunction pushes
the particles around. The interaction only goes in that direction: the particles’ positions have
no bearing on the future evolution of the wavefunction. If a particle could be observed in one of
two spatially separated places, then the wavefunction still has some amplitude around both of
them even after themeasurement is performed, but the particle itself is “stuck” under one of
the two pieces of the wavefunction. What we called collapse therefore never actually occurs; the
whole wavefunction is still there, but one piece’s contribution to the particle’s future evolution
is dominant, making it seem as though we’ve projected out the other half. In this way Bohmian
mechanics is completely deterministic.

Thismight seem strange given that I’ve insisted repeatedly throughout this article that quan-
tummechanics can’t be explainedmerely by interpreting amplitudes as probabilities. Bohmian

https://arxiv.org/abs/1310.8343
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mechanics gets around this problem in a couple ways. First, we are not forced into paradoxical
conclusions that come from having to pick an answer to all questions wemight ask about any
basis because the position basis is special; the theory only requires definite answers to questions
about position, not any other observable. Second, even thoughwe’ve added a determinate value
for the position of every particle, the evolution of this value depends on thewholewavefunction,
even the parts of it that are far away. At the end of the entanglement section I mentioned that
the CHSH game excludes “local hidden variable theories” of quantummechanics. Bohmian
mechanics gets around this by not being local — you can’t explain what happens to one of your
entangled particles without using your knowledge about what’s happening to the other one,
because the time evolution of each particle depends on the entire, entangled wavefunction.

The other collapse-free interpretation I want tomention involves asserting that the wave-
function— the vector in theHilbert space that evolves according to the Schrödinger equation—
is enough all on its own to describe the state of the universe. The question then arises about
how to interpret the results of ameasurement. Suppose some particle is in a state like 1√

2 (A + A
′)

and wemeasure an observable for which A and A ′ are eigenvectors. What happens according to
this wavefunction-only interpretation is that themeasurement process causes the universe to
move from state like 1√

2"0 ⊗ (A + A ′) to a state like 1√
2 ("A ⊗ A +"A ′ ⊗ A ′), where"0 is a state in

which themeasurement has yet to be performed and"A and"A ′ are states in which we have
measured A and A ′ respectively. That is, measurement causes themeasuring apparatus—which
may even include your brain— to become entangled with the particle, and each outcome is
just as “real” as the other.

For this reason, this description usually goes by the somewhat unfortunate name of the
many-worlds interpretation, since one might choose to interpret the first term of this sum
as “the world in which wemeasured A .” (Note that this entanglement phenomenon occurs in
Bohmianmechanics too, but in Bohmianmechanics the actual positions of the particles pick
out only one term of the sum to correspond to the actual world.) But the name “many-worlds”
is slightly misleading: the splitting-up of the wavefunction into “worlds” is not fundamental to
the theory. Wemight choose to express the wavefunction as a linear combination of vectors
like"A ⊗ A that seem especially “world-ish,” but the wavefunction itself is all that’s necessary to
specify the state of the universe.

From amathematical perspective, themany-worlds interpretation is very appealing. Un-
like any of the alternatives we’ve discussed, it doesn’t involve adding any extramathematical
objects to the bare bones of quantum mechanics — there is no such thing as collapse, the
universe evolves through time completely deterministically, and there are no hidden variables
or preferred bases; the wavefunction is all there is. Still, the idea that the other parts of the
wavefunction—which probably include complete copies of slightly different versions of you
— are just as real as the part we supposedly live inmight be hard to swallow. Additionally, it’s
difficult, thoughmaybe not impossible, to square this story with the Born rule. Why, if all the
branches of the wavefunction are equally real, do we see certain outcomes with a probability
equal to the squared absolute values of the corresponding amplitudes?

All of these stories come from a desire to explain the same confusing set of facts. On the
one hand, quantummechanics is an incredibly empirically successful theory; it provides very
precise andcorrect predictions for awide variety of experiments and there aremanyphenomena
which can’t be explained at all without it. On the other hand, the description of the world it
provides us is hard to reconcile with the fact that themacroscopic universe seems to behave
muchmore like the description offered by classical mechanics. We can see themeasurement
problem as asking how these two things can both be true at the same time.

There is not widespread consensus in favor of any one perspective either among physicists
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or philosophers of physics. Some writers contend that the measurement problemmight be
resolved by somebetter yet-to-be-discovered physical theory that includes quantummechanics
as a limiting case. Others claim to have a reason why themeasurement problem isn’t a problem
at all and that everyone who thinks it is is making some kind of fundamental mistake, although
none of these explanations has won over the physics world either. I think it’s no exaggeration
to say that quantummechanics is the single biggest shift since Newton in humanity’s under-
standing of the physical world. Even if one of these stories turns out to somehow be true, the
fact that there has been somuch disagreement for so long about themeasurement problem is a
testament to how different quantummechanics is from any physical theory that came before it.
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