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QuantumMechanics II - The Path
Integral

Nic Ford

1 Introduction
This article is part of a series on physics for mathematicians, and as the title suggests, it’s a
sequel to my earlier article on quantummechanics. It’s not necessary to have read that article
in particular to understand this one, though; any exposure to the basic framework of quantum
mechanics should be just fine, and we’ll briefly review the relevant parts.

We’re going tobediscussing thepath integral formulation of quantummechanics, an alterna-
tive way to set up the theory first described by Richard Feynman in his Ph.D. thesis. The original
motivation was to find a way to express quantummechanics in terms of the Lagrangian (rather
than Hamiltonian) description of classical mechanics, but it results in a very different-looking
picture: rather than providing a PDE that lets you evolve the state of the system through time, it
expresses the relevant quantities in terms of an integral over all possible paths in configuration
space connecting a given pair of points.

As onemight imagine, it takes quite a bit of nontrivial mathematical work to make sense of
such an integral and to show that it produces the same physics as the Hamiltonian approach to
quantummechanics. As happens a lotwhenphysics interactswithmathematics, physicists tend
not to worry a whole lot about this, and it is indeed possible to get a lot done computationally
without taking care of those details. We’ll start out by presenting this informal picture to get an
idea of why one should expect anything like a path integral to show up at all, but afterwards
we’ll outline a couple of the schemes for makingmathematical sense of it. We’ll conclude with a
short discussion of the advantages of viewing quantummechanics from this perspective.

One thing this article doesn’t spend enough time on is explaining how to use the path
integral to do concrete computations. I made this choice not because these computations are
unimportant but because the topic is covered very well in many of the references. I encourage
the reader to supplement this piece by at least reading up on how to use the path integral to
solve the quantum harmonic oscillator.

I foundmany sources very helpful when preparing this article. They include:

• Several of the books I referred to in the first quantummechanics article discuss this topic
well, including:

– Quantum Field Theory: A Tourist Guide for Mathematicians by Gerald Folland
– QuantumMechanics for Mathematicians by Leon Takhtajan
– Quantum Theory for Mathematicians by Brian Hall

Takhtajan’s discussion is by far themost thorough of these three.

http://nicf.net/articles/physics-for-mathematicians
http://nicf.net/articles/quantum-mechanics-foundations/
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• The book Lectures on QuantumMechanics by StevenWeinberg also has a brief but good
section on the path integral.

• You can learnmuchmore about themathematically rigorous versions of the path integral
outlined here from the following books:

– Functional Integration and Quantum Physics by Barry Simon
– Mathematical Theory of FeynmanPath Integrals: An Introduction by Sergio Albeverio,
Raphael Høegh-Krohn, and SoniaMazzucchi

– Quantum Physics: A Functional Integral Point of View by James Glimm and Arthur
Jaffe.

• ThesenotesbyMatthiasBlaugo through theconcepts at aphysicist’s level of rigor, and they
include a lot of the explicit computations I skip here. These notes by Hitoshi Murayama
are similar.

I am grateful to Harry Altman and JordanWatkins for helpful comments on an earlier draft
of this article.

2 The Informal Argument
We’ll start by going through the argument as it’s usually presented in physics classes, which is
pretty similar to what Feynman wrote in his thesis. The goal here is to understand why one
should believe something like Feynman’s formula should be true. The argument will raise many
mathematical questions, up to and including how one is even supposed to define the path
integral itself. All of these questions are worthwhile, but we will hold off on answering any of
them until the next section.

We will consider a quantum particle inR𝑑 , so that the Hilbert space isH � 𝐿2 (R𝑑 ), and
write𝑄1, . . . ,𝑄𝑑 and 𝑃1, . . . , 𝑃𝑑 for the position andmomentum observables respectively. We
will assume throughout that the Hamiltonian can be expressed as a power series in the𝑄 ’s and
𝑃 ’s. We can express states in terms of wavefunctions𝜓 : R𝑑 → R with

∫
R𝑑

|𝜓 |2 = 1, so that
(𝑄 𝑗𝜓 ) (𝑥) = 𝑥𝑗𝜓 (𝑥) and 𝑃𝑗𝜓 = −𝑖ℏ𝜕𝑗𝜓 . Throughout this article, we will use the notation ⟨−,−⟩
for inner products inH and · for inner products inR𝑑 .

The𝑄 ’s commute, so they have a common set of generalized eigenstates given by𝜓𝑦 (𝑥) :=
𝛿 (𝑥 − 𝑦 ) for 𝑦 ∈ R𝑑 . In particular, this means that for any𝜓 ∈ H ,𝜓 (𝑥) = ⟨𝜓𝑥 ,𝜓⟩. The same is
true of the 𝑃 ’s; in this representation their generalized eigenstates take the form

𝜙𝑝 (𝑥) = (2𝜋ℏ)−𝑑/2 exp(𝑖𝑝 · 𝑥/ℏ)

for𝑝 ∈ R𝑑 . It will be important going forward that wemay write any state𝜓 in terms of either
of these generalized bases, that is,

𝜓 =

∫
⟨𝜓𝑦 ,𝜓⟩𝜓𝑦𝑑𝑦 =

∫
⟨𝜙𝑝 ,𝜓⟩𝜙𝑝𝑑𝑝.

The first formula follows directly from the definition of the delta function, and the second
amounts to the Fourier inversion formula.

Given some𝜓 representing the state of the system at time 0, the state at some time 𝑡 > 0
is given by 𝑒 −𝑖𝑡𝐻 /ℏ𝜓 , where𝐻 is the Hamiltonian of the system in question. Let’s write𝜓𝑞,𝑡 =

http://www.blau.itp.unibe.ch/lecturesPI.pdf
http://hitoshi.berkeley.edu/221A/pathintegral.pdf
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𝑒 𝑖𝑡𝐻 /ℏ𝜓𝑞 for the state which has definite position 𝑞 at time 𝑡 , so that𝜓𝑞 = 𝜓𝑞,0. This gives us a
convenient way to express our time-evolved wavefunction:

𝜓 (𝑞 ′, 𝑡 ) = ⟨𝜓𝑞 ′ , 𝑒 −𝑖𝑡𝐻 /ℏ𝜓⟩ = ⟨𝜓𝑞 ′,𝑡 ,𝜓⟩ =
∫

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩⟨𝜓𝑞,0,𝜓⟩𝑑𝑞 =

∫
⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩𝜓 (𝑞)𝑑𝑞.

So, if we can compute ⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩ as a function of the variables 𝑞, 𝑞 ′, 𝑡 , we’ll have an expression
for the dynamics of any wavefunction. This function is sometimes called the propagator. Our
goal is to find an expression for it that doesn’t mention operators or the Hilbert space.

2.1 To First Order
We’ll build up from the case where 𝑞 ′ = 𝑞 + Δ𝑞 and 𝑡 = Δ𝑡 , where the changes in position and
time are small enough that we can discard everything past first order. In this case, we have

⟨𝜓𝑞+Δ𝑞,Δ𝑡 ,𝜓𝑞,0⟩ = ⟨𝜓𝑞+Δ𝑞 , 𝑒 −𝑖 (Δ𝑡 )𝐻 /ℏ𝜓𝑞 ⟩
= ⟨𝜓𝑞+Δ𝑞 , (1 − 𝑖 (Δ𝑡 )𝐻 /ℏ +𝑂 (Δ𝑡 2))𝜓𝑞 ⟩

= 𝛿 (Δ𝑞) − 𝑖 (Δ𝑡 )
ℏ

⟨𝜓𝑞+Δ𝑞 , 𝐻𝜓𝑞 ⟩ +𝑂 (Δ𝑡 2)

We can eliminate all mention of operators from the second term by employing the following
trick. We assumed that𝐻 is a power series in the𝑄 ’s and 𝑃 ’s, so use the commutation relations
[𝑄 𝑗 , 𝑃𝑘 ] = 𝑖ℏ𝛿𝑗𝑘 to place, in each term, all𝑃 ’s to the left of any𝑄 ’s. Write𝐻cl (𝑞,𝑝) for the formal
power series— in ordinary, commuting variables— that results from this process. (For example,
if𝐻 = 𝑄1𝑃1 +𝑄3𝑃 2

2 = 𝑃1𝑄1 + 𝑖ℏ + 𝑃 2
2𝑄3, then𝐻cl = 𝑖ℏ + 𝑝1𝑞1 + 𝑝22𝑞3.)

Expand𝜓𝑞+Δ𝑞 in terms of generalized eigenstates for the 𝑃 ’s:

⟨𝜓𝑞+Δ𝑞 , 𝐻𝜓𝑞 ⟩ =
∫

⟨𝜓𝑞+Δ𝑞 , 𝜙𝑝 ⟩⟨𝜙𝑝 , 𝐻𝜓𝑞 ⟩𝑑𝑝.

With𝐻 in the “𝑃 ’s before𝑄 ’s” form described above wemay thenmove each of the𝑄 and 𝑃
factors in each term of𝐻 to the corresponding side of the inner product, so that each is acting
on one of its own eigenvectors. We’re left with∫

𝐻cl (𝑞,𝑝)⟨𝜓𝑞+Δ𝑞 , 𝜙𝑝 ⟩⟨𝜙𝑝 ,𝜓𝑞 ⟩𝑑𝑝 = (2𝜋ℏ)−𝑑
∫

𝐻cl (𝑞,𝑝) exp(𝑖𝑝 · Δ𝑞/ℏ)𝑑𝑝,

where the last expression comes from plugging in the formula from above for ⟨𝜓𝑞 , 𝜙𝑝 ⟩ = 𝜙𝑝 (𝑞)
twice.

Another Fourier transform lets us write 𝛿 (Δ𝑞) = (2𝜋ℏ)−𝑑
∫
𝑒 𝑖𝑝 ·Δ𝑞/ℏ𝑑𝑝 , so that both terms in

our expression are integrals over𝑝 . Evaluating all the inner products and combining the terms
gives us

⟨𝜓𝑞+Δ𝑞,Δ𝑡 ,𝜓𝑞,0⟩ = (2𝜋ℏ)−𝑑
∫

exp
(
𝑖𝑝 · Δ𝑞
ℏ

) (
1 − 𝑖 (Δ𝑡 )

ℏ
𝐻cl (𝑞,𝑝)

)
𝑑𝑝 +𝑂 (Δ𝑡 2)

= (2𝜋ℏ)−𝑑
∫

exp
(
𝑖 (Δ𝑡 )
ℏ

[
𝑝 · Δ𝑞

Δ𝑡
−𝐻cl (𝑞,𝑝)

] )
𝑑𝑝 +𝑂 (Δ𝑡 2),

where in the second expression we have turned 1 − 𝑖 (Δ𝑡 )𝐻cl/ℏ back into an exponential.
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2.2 The Role of the Lagrangian
There is already something interesting about this expression. Whenmoving between Hamil-
tonian and Lagrangianmechanics, we turn a Hamiltonian into its corresponding Lagrangian
using a Legendre transform, which (in simple cases) takes the form 𝐿 = 𝑝 ¤𝑞 −𝐻 . At least formally,
this looks a lot like the expression we have in square brackets inside this integral!

Themaindifference is that in the classical version,𝑝 and ¤𝑞 are relatedbyoneof theHamilton-
Jacobi equations, 𝑑𝑞/𝑑𝑡 = 𝜕𝐻 /𝜕𝑝 , whereas in this integral, 𝑝 and Δ𝑞/Δ𝑡 have nothing to do
with each other. The analogy with Lagrangianmechanics can bemade to work, though, in the
(very common) case where the Hamiltonian has the form𝐻 = 𝑃 2/2𝑚 +𝑉 (𝑄 ) for some𝑚 > 0
and some function𝑉 . In this case, we have

(2𝜋ℏ)−𝑑
∫

exp
(
𝑖 (Δ𝑡 )
ℏ

[
𝑝 · Δ𝑞

Δ𝑡
− 𝑝2

2𝑚 −𝑉 (𝑞)
] )
𝑑𝑝,

which is a Gaussian integral.
We’ll take a brief detour to discuss how to compute integrals like this one. Consider first the

integral
∫
R𝑑
𝑒 −𝑄 (𝑥 )/2, where𝑄 (𝑥) = 𝑥 · 𝐴𝑥 + 𝑏 · 𝑥 + 𝑐 , where 𝐴 is a positive definite symmetric

matrix,𝑏 ∈ R𝑑 , and 𝑐 ∈ R. Complete the square towrite𝑄 (𝑥) in the form (𝑥 −𝑥0) ·𝐴 (𝑥 −𝑥0) +𝑐 ′;
we then have that 𝑥0 is theminimum of𝑄 and 𝑐 ′ = 𝑄 (𝑥0). So∫

R𝑑
𝑒 −𝑄 (𝑥 )/2 = 𝑒 −𝑄 (𝑥0 )/2

∫
R𝑑
𝑒 −(𝑥−𝑥0 ) ·𝐴 (𝑥−𝑥0 )/2 = 𝑒 −𝑄 (𝑥0 )/2

∫
R𝑑
𝑒 −𝑥 ·𝐴𝑥/2 = 𝑒 −𝑄 (𝑥0 )/2

√︂
(2𝜋)𝑑
det𝐴 ;

the last equality follows by performing an orthogonal change of coordinates to diagonalize 𝐴
and then rescaling each coordinate of 𝑥 by the square root of the corresponding eigenvalue of 𝐴.

This equation in fact still holds if𝐴 is complex-valuedwithpositive definite real part, with the
caveat thatwe have to be careful about picking the right square root of the nowpossibly complex
det𝐴. (We won’t belabor this question here.) If the real part of 𝐴 is just positive semidefinite (as
in our present case, where𝐴 is a purely imaginary scalar) then the integral is no longer absolutely
convergent. The strategy we’ll go with to deal with this is to replace 𝐴 with 𝐴 + 𝜖𝐼 and then
letting 𝜖 go to 0 from the right.

At any rate, this argument shows that in order to compute our integral, we need to find the
value of𝑝 at which𝑝 · (Δ𝑞/Δ𝑡 ) −𝐻 is stationary and plug it into the exponent in the integral.
In other words, we want the value of𝑝 for which Δ𝑞/Δ𝑡 = 𝜕𝐻 /𝜕𝑝 . But this exactly means that
𝑝 · (Δ𝑞/Δ𝑡 ) −𝐻 is the Lagrangian!

When all the factors are accounted for, we therefore have

⟨𝜓𝑞+Δ𝑞,Δ𝑡 ,𝜓𝑞,0⟩ =
(2𝜋𝑖ℏΔ𝑡

𝑚

)−𝑑/2
exp

(
𝑖Δ𝑡

ℏ

[
1
2𝑚

(
Δ𝑞

Δ𝑡

)2
−𝑉 (𝑞)

])
+𝑂 (Δ𝑡 2)

=

(2𝜋𝑖ℏΔ𝑡
𝑚

)−𝑑/2
exp

[
𝑖Δ𝑡

ℏ
𝐿

(
𝑞,

Δ𝑞

Δ𝑡

)]
+𝑂 (Δ𝑡 2).

(Here
√
𝑖 = 𝑒 𝑖𝜋/4.) The argument here would also work if the Hamiltonian contained a term

of the form 𝑓 (𝑄 )𝑃 for an arbitrary function 𝑓 , sincewewould still be leftwith aGaussian integral
to compute, but when it matters we’ll restrict our attention to the case where this term is absent.
This formula will be our starting point for the general case.
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2.3 In General
We can turn this first-order formula into amethod for computing ⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩ even when 𝑡 is
large. The trick is simply to divide the interval [0, 𝑡 ] into small pieces and use the first-order
formula on each one: just as we inserted a (generalized) basis of momentum eigenstates into
themiddle of the expression before, wemay do the same with position eigenstates as a way of
cutting the time interval into two pieces. That is, for 0 < 𝑡1 < 𝑡 , we have

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩ =
∫

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞1,𝑡1⟩⟨𝜓𝑞1,𝑡1 ,𝜓𝑞,0⟩𝑑𝑞1.

Divide the whole interval into𝑁 pieces, writing 𝑡𝑗 = 𝑗𝑡 /𝑁 for 𝑗 = 0, . . . , 𝑁 . We get:

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩ =
∫

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞𝑁 −1,𝑡𝑁 −1⟩ · · · ⟨𝜓𝑞1,𝑡1 ,𝜓𝑞,0⟩𝑑𝑞1 · · ·𝑑𝑞𝑁 −1.

(For easeof reading, I’musingonly one integral sign at the front to stand for all of the𝑞𝑗 integrals.)
Writing Δ𝑡 = 𝑡 /𝑁 , 𝑞0 = 𝑞 , and 𝑞𝑁 = 𝑞 ′, our first-order formula then implies that our propagator
equals:

lim
𝑁→∞

(2𝜋ℏ)−𝑑𝑁
∫

exp ©­« 𝑖Δ𝑡ℏ

𝑁 −1∑︁
𝑗=0

𝑝𝑗 ·
𝑞𝑗+1 − 𝑞𝑗

Δ𝑡
−𝐻cl (𝑞𝑗 , 𝑝𝑗 )

ª®¬𝑑𝑞1 · · ·𝑑𝑞𝑁 −1𝑑𝑝1 · · ·𝑑𝑝𝑁 −1

 ,
or, in the case where the Hamiltonian is quadratic in the 𝑃 ’s and we can perform the𝑝 integrals,

lim
𝑁→∞

©­«
(2𝜋𝑖ℏΔ𝑡

𝑚

)−𝑑𝑁 /2 ∫
exp


𝑖Δ𝑡

ℏ

𝑁 −1∑︁
𝑗=0

𝐿
(
𝑞𝑗 ,

𝑞𝑗+1 − 𝑞𝑗
Δ𝑡

) 𝑑𝑞1 · · ·𝑑𝑞𝑁 −1
ª®¬ .

Recall that in Lagrangianmechanics, the path𝛾 (𝑡 ) that a particle follows has the property
that its action

𝑆 [𝛾 ] =
∫ 𝑡

0
𝐿 (𝛾 (𝑢), ¤𝛾 (𝑢)) 𝑑𝑢

is stationary. Intriguingly, the summation appearing inside this second expression can be
expressed as an action: it is (up to a constant factor) the action of a path that visits each 𝑞𝑗 at
time 𝑡𝑗 and travels with constant velocity in between.

As𝑁 grows, the set of paths appearing in this way growsmore refined, approximating any
particular continuous path arbitrarily closely in (say) the 𝐿∞ metric. This inspired Feynman to,
somewhat fancifully, think of this expression as a limit of “Riemann sums” of an integral over
the space of all paths connecting 𝑞 to 𝑞 ′. This is written

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩ = C
∫
𝐶 (𝑞 ′,𝑞 ;𝑡 )

exp
[
𝑖

ℏ

∫ 𝑡

0
𝐿 (𝛾 (𝑢), ¤𝛾 (𝑢)) 𝑑𝑢

]
D𝛾

= C
∫
𝐶 (𝑞 ′,𝑞 ;𝑡 )

exp
(
𝑖

ℏ
𝑆 [𝛾 ]

)
D𝛾 .

Here𝐶 (𝑞 ′, 𝑞 ; 𝑡 ) is the set of all continuous paths𝛾 : [0, 𝑡 ] → R𝑑 with𝛾 (0) = 𝑞 and𝛾 (𝑡 ) = 𝑞 ′.
This expression has a lot of mathematical problems if one tries to take it too literally. D𝛾 refers
to the (entirely fictional) translation-invariant measure on the space of all such paths. C is
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supposed to be a constant depending only on𝑚 and 𝑡 , the analogue of the (2𝜋𝑖ℏΔ𝑡 /𝑚)−𝑑𝑁 /2

appearing in the earlier expression, which of course doesn’t converge to anything as𝑁 → ∞.
Note that theΔ𝑡 outside the sum in the earlier expression has become the 𝑑𝑢 inside the integral.

Plugging this into our original expression for the time-evolved wavefunction produces the
formula

𝜓 (𝑞 ′, 𝑡 ) = C
∫
𝐶 (𝑞 ′;𝑡 )

exp
(
𝑖

ℏ
𝑆 [𝛾 ]

)
𝜓 (𝛾 (0), 0)D𝛾 ,

where 𝐶 (𝑞 ′; 𝑡 ) is the set of all continuous paths 𝛾 with 𝛾 (𝑡 ) = 𝑞 ′, but with the left endpoint
unconstrained.

3 Rigorous Path Integrals
Despite seeming like total mathematical nonsense, this formalism is very powerful. It’s possible
to get meaningful answers out of it by just treating it formally and computing until you’ve
eliminated all mention of spaces of paths and are left with just a number or a function. This
is essentially what physicists do, and it works well enough for that purpose. But the ideas that
gave rise to the path integral are compelling enough tomake one wonder if there is any way at
all to makemathematical sense of it. And it is in fact possible to makemore progress on this
than youmight think!

We will focus entirely on the very common case where𝐻 = 𝐻0 +𝑉 (𝑄 ), where𝐻0 = 𝑃 2/2𝑚
and𝑉 is a function. (Depending on the framework, there will be some conditions on𝑉 .) In this
case, everything we’ve done up through concluding

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩ = lim
𝑁→∞

©­«
(2𝜋𝑖ℏΔ𝑡

𝑚

)−𝑑𝑁 /2 ∫
exp


𝑖Δ𝑡

ℏ

𝑁 −1∑︁
𝑗=0

𝐿
(
𝑞𝑗 ,

𝑞𝑗+1 − 𝑞𝑗
Δ𝑡

) 𝑑𝑞1 · · ·𝑑𝑞𝑁 −1
ª®¬

can bemade rigorous following amore careful version of essentially the same computation.
The keymathematical ingredient is the Lie–Kato–Trotter formula, which says that, if 𝐴 and

𝐵 are self-adjoint operators on a Hilbert spaceH and 𝐴 + 𝐵 is essentially self-adjoint on the
intersection of their domains, then for any𝜓 ∈ H , we have

𝑒 𝑖 (𝐴+𝐵 )𝜓 = lim
𝑁→∞

(𝑒 𝑖𝐴/𝑁 𝑒 𝑖𝐵/𝑁 )𝑁𝜓.

Applying this to 1
ℏ
𝐻0 and 1

ℏ
𝑉 produces the formula with the integral over both the 𝑝 and 𝑞

variables, and the𝑝 integrals can then be performed to produce this expression just as we did
above.

It’s entirely reasonable to be satisfied with this as a definition of the path integral: you can
treat the integral over paths as just a formal expression, a suggestive way of writing this limit.
But it’s actually possible to make sense of the integral in a way that actually “takes place” on the
space of continuous paths, and there are some interesting things to learn by doing so. A lot of
approaches have been developed since Feynman’s original proposal; we’ll sketch two of them
here.
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3.1 TheWienerMeasure and Analytic Continuation
One strategy involves taking the Schrödinger equation for our Hamiltonian

𝑑𝜓

𝑑𝑡
=
−𝑖
ℏ
𝐻𝜓 =

−𝑖
ℏ

(
−ℏ2
2𝑚 ∇2𝜓 +𝑉𝜓

)
and replacing the real number 𝑡 with a purely imaginary parameter, writing 𝑡 = −𝑖𝜏 with𝜏 real,
which has the effect of turning 𝑒 −𝑖𝑡𝐻 /ℏ into 𝑒 −𝜏𝐻 /ℏ and the Schrödinger equation into

𝑑𝜓

𝑑𝜏
=

ℏ

2𝑚∇2𝜓 − 1
ℏ
𝑉𝜓.

(This move is sometimes called performing aWick rotation in the time variable.) It’s useful to
think of this new equation as a version of the heat equation, just with the potential term added
on.

If we went through the same argument as before, but with the goal of computing 𝑒 −𝜏𝐻 /ℏ, the
resulting path integral expression would be

⟨𝜓𝑞 ′ , 𝑒 −𝜏𝐻 /ℏ𝜓𝑞 ⟩ = C
∫

exp
[
−1
ℏ

∫ 𝜏

0

(1
2𝑚 | ¤𝛾 (𝑢) |2 +𝑉 (𝛾 (𝑢))

)
𝑑𝑢

]
D𝛾 ,

where the integral again takes place over the space of all continuous paths𝛾 with𝛾 (0) = 𝑞 and
𝛾 (𝑡 ) = 𝑞 ′. Wementioned before that this expression is problematic for a couple reasons: there
is nomeasure on the space of continuous paths that can actually play the role ofD𝛾 here, and
there is no number which can play the role of C. In this heat-equation-like setting, though, it
turns out that there is ameasure which can play the role of

C exp
[
−1
ℏ

∫ 𝜏

0

1
2𝑚 | ¤𝛾 (𝑢) |2𝑑𝑢

]
D𝛾 .

Note the formal similarity between this expression and the portion of the path integral
expression we are attempting to replace. The normalizing factor out front serves the role of
C, the product of the exponentials inside the integral serves the role of themiddle factor, and
𝑑𝑞1, . . . 𝑑𝑞𝑛−1 serves the role ofD𝛾 . None of these three factors has anymeaning individually in
the limit as 𝑛 goes to infinity— even | ¤𝛾 (𝑢) |2 is meaningless, since the set of paths differentiable
at even one point hasWiener measure zero! — but their product does.

Themeasure that does the job is called the conditional Wienermeasure. It is a probability
measure 𝜇𝜏𝑞 ′,𝑞 on the set𝐶 (𝑞 ′, 𝑞 ;𝜏) of continuous paths on [0,𝜏] starting at 𝑞 and ending at
𝑞 ′, and it is uniquely characterized by the property that, for any partition 0 = 𝜏0 < 𝜏1 < · · · <
𝜏𝑛−1 < 𝜏𝑛 = 𝜏 and any Borel sets 𝐴1, . . . , 𝐴𝑛−1 ⊆ R𝑑 ,

𝜇𝜏𝑞 ′,𝑞 ({𝛾 : 𝛾 (𝜏𝑖 ) ∈ 𝐴𝑖 ∀𝑖 }) =
∫
𝐴1
· · ·

∫
𝐴𝑛−1

𝑝 (𝑞𝑛 , 𝑞𝑛−1;𝜏𝑛 −𝜏𝑛−1) · · ·𝑝 (𝑞1, 𝑞0;𝜏1−𝜏0)𝑑𝑞1 · · ·𝑑𝑞𝑛−1,

where 𝑞𝑛 = 𝑞 ′, 𝑞0 = 𝑞 , and

𝑝 (𝑞𝑓 , 𝑞𝑖 ;Δ𝜏) = (2𝜋ℏΔ𝜏/𝑚)−𝑑/2 exp
(
−
𝑚 (𝑞𝑓 − 𝑞𝑖 )2

2ℏΔ𝜏

)
.

(The “conditional” in the name refers to the fact that we are constraining the value of the right
endpoint; the unconditional Wienermeasure— obtained by removing the factor involving 𝑞 ′ —
constrains only the left.)
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TheWiener measure was originally developed to describe Brownianmotion, and themea-
sure of the set we just described can be thought of as the probability that a particle undergoing
Brownian motion visits each 𝑞𝑖 at the corresponding time 𝜏𝑖 , conditioned on the fact that it
starts at 𝑞 and ends at 𝑞 ′. The function𝑝 (𝑞𝑓 , 𝑞𝑖 ;Δ𝜏) gives the probability for a particle starting
at 𝑞𝑖 to end up at 𝑞𝑓 after time Δ𝜏 . Notice that the Wick rotation has the effect of making the
integrand in the path integral positive, since the exp is now applied to a real rather than purely
imaginary quantity, which enables us to interpret the resultingmeasure probabilistically.

It was crucial to perform theWick rotation tomake this work. Heuristically, since almost
all paths fail to be differentiable, you can think of the “divergent” integral exp(−

∫ 𝜏

0 | ¤𝛾 |2) as
compensating for the “infinte” factorD𝛾 . If we tried to do this for the original path integral,
we would find ourselves with an extra factor of 𝑖 inside the exponential, which would ruin this
delicate balance. There is no analogue of theWiener measure for the original, un-rotated path
integral.

If we interpret the path integral in terms of theWienermeasure, then it does in fact solve
our Wick-rotated Schrödinger equation. Since the Wiener measure is meant to stand for all
the factors in the path integral except the one containing the potential, we should integrate
it against that last factor to get the propagator. That is, we have the Feynman–Kac formula,
which says that if𝑉 is continuous and bounded below, then

⟨𝜓𝑞 ′ , 𝑒 −𝜏𝐻 /ℏ𝜓𝑞 ⟩ =
∫
𝐶 (𝑞 ′,𝑞 ;𝜏 )

exp
(
−1
ℏ

∫ 𝜏

0
𝑉 (𝛾 (𝑢))𝑑𝑢

)
𝑑𝜇𝜏𝑞 ′,𝑞 .

Now, we are left with the question of how this formula helps us solve the actual Schrödinger
equation. One tempting strategy try to extend the definition of theWiener measure to cover
complex values of 𝜏 ; we already said this idea is no good when 𝜏 is purely imaginary (that is,
when 𝑡 is real) but maybe we could consider some sort of limit as𝜏 approaches the imaginary
axis. Sadly, this can’t work: the construction of theWiener measure fails as soon as𝜏 has any
nonzero imaginary part at all.

Instead, the strategy is to consider an analytic continuation of the Feynman–Kac formula.
There are a few ways of doing this that work, including allowing𝜏 ,𝑚, or ℏ to become complex.
In all cases, as soon as the parameter leaves the real axis, the function in question is no longer
itself expressible as an integral over the space of paths. Nonetheless, by performing this analytic
continuationand taking theappropriate limit aswhicheverparameterapproaches the imaginary
axis, we can indeed recover a solution to the Schrödinger equation. There are details on these
approaches in Glimm and Jaffe’s book, and a short discussion with good references in the final
chapter of the book by Albeverio et al.

3.2 Fresnel Integrals
One indication that it might be challenging tomakemathematical sense of the path integral
comes from the fact that the integrand is a complex number of absolute value 1, so if anything
resembling convergence is going to happen, it must rely on rapidly oscillating values cancelling
each other out rather than on the integrand decaying rapidly enough. This is true even in
one dimension: the integral

∫ ∞
−∞ exp(𝑖𝑝2)𝑑𝑝 converges only conditionally, since exp(𝑖𝑝2) is

obviously not Lebesgue integrable.
The approach taken in the book by Albeverio et al. mentioned in the introduction revolves

around assigning a consistent meaning to integrals of this type. They start by considering
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integrals onR𝑑 of the form ∫
𝑒 −

1
2 𝑖 |𝑥 |

2
𝜙 (𝑥)𝑑𝑥.

If 𝜙 has rapid enough decay — for example, if it belongs to the Schwarz space — then this
integral is well-defined, and wemay take a Fourier transform to show that it equals

(2𝜋𝑖 )−𝑑/2
∫

𝑒
1
2 𝑖 |𝑥 |

2
𝜙 (𝑥)𝑑𝑥,

where 𝜙 (𝑥) =
∫
exp(𝑖 (𝑥 · 𝑦 ))𝜙 (𝑦 )𝑑𝑦 is the Fourier transform of 𝜙 . Note the similarity between

this integral and the one that appears inside the limit in our application of the Lie–Kato–Trotter
formula.

The first integral actually still makes sense if we replace 𝜙 (𝑥)𝑑𝑥 with any complex measure
𝑑𝜇(𝑥) with finite total variation. So, if we have a function 𝑓 which is the Fourier transform of
such ameasure— that is, 𝑓 (𝑥) =

∫
exp(𝑖 (𝑥 · 𝑦 ))𝑑𝜇(𝑦 )—we can define

(2𝜋𝑖 )−𝑑/2
∫

𝑒
1
2 𝑖 |𝑥 |

2
𝑓 (𝑥)𝑑𝑥

by setting it equal to ∫
𝑒 −

1
2 𝑖 |𝑥 |

2
𝑑𝜇(𝑥),

since, when 𝜇 has finite total variation, this integral is well-defined even if the first one is not.
For example, 𝑓 (𝑥) = 1 is in the class of functions that arise in this way.

The authors call the functions 𝑓 that arise in this way Fresnel integrable functions and they
call the integral being defined the Fresnel integral of 𝑓 , after the classical Fresnel integrals that
take a similar form. The Fresnel integrable functions include the Schwarz functions, but also
include other functions. For such functions— including, for example, 𝑓 (𝑥) = 1— the function
𝑒

1
2 𝑖 |𝑥 |

2
𝑓 (𝑥) is not Lebesgue integrable in general, so the only meaning its integral has in this

context is given by the integral against 𝑑𝜇.
Note that the factor of (2𝜋𝑖 )−𝑑/2 is a part of the formal expression of the Fresnel integral we

are now defining; to emphasize this, the authors write∫̃
𝑒

1
2 𝑖 |𝑥 |

2
𝑓 (𝑥)𝑑𝑥 :=

∫
𝑒 −

1
2 𝑖 |𝑥 |

2
𝑑𝜇(𝑥).

The tilde is supposed to be taken to “include” the factor of (2𝜋𝑖 )−𝑑/2. This factor serves the role
of the quantity we’ve been calling C.

We can further extend the definition of the Fresnel integral — tilde and all — to an infinite-
dimensional separable real Hilbert space P. That is, if 𝜇 is a complex measure of bounded total
variation on P and 𝑓 is its Fourier transform, we can define

∫̃
𝑒

1
2 𝑖 |𝑥 |

2
𝑓 (𝑥)𝑑𝑥 via the exact same

formula, but since P is infinite-dimensional there is no longer an analogue of the expression
with the (2𝜋𝑖 )−𝑑/2.

Making sense of the Feynman path integral in this formulation is then amatter of applying
this machinery when P is an appropriate Hilbert space of continuous paths in someR𝑑 . (This
is not the Hilbert space that quantum mechanics takes place in!) Write P for the space of
differentiable paths𝛾 : [0, 𝑡 ] → R𝑑 such that𝛾 (0) = 0 and the time derivative ¤𝛾 is in 𝐿2. In



Section 4 What Is It Good For? 10

order to produce the path integral formula we’re after, we take the inner product on P to be
given by

⟨𝛾0,𝛾1⟩ =
𝑚

ℏ

∫ 𝑡

0
¤𝛾0 (𝑢) · ¤𝛾1 (𝑢)𝑑𝑢.

Suppose our initial state is given by the wavefunction𝜓0 (𝑥). Then, defining

𝑓 (𝛾 ) = exp
[
−𝑖
ℏ

∫ 𝑡

0
𝑉 (𝛾 (𝑢))𝑑𝑢

]
𝜓0 (0),

the authors show that the path integral solves the Schrödinger equation, in the sense that

𝜓 (𝑥, 𝑡 ) =
∫̃
𝑒

1
2 𝑖 |𝛾 |

2
𝑓 (𝛾 )𝑑𝛾

=

∫̃
exp

(
𝑖

ℏ

∫ 𝑡

0

1
2𝑚 | ¤𝛾 (𝑢) |2 𝑑𝑢

)
· exp

(
−𝑖
ℏ

∫ 𝑡

0
𝑉 (𝛾 (𝑢))𝑑𝑢

)
𝜓0 (0)𝑑𝛾 .

As in theWiener measure approach, we are able to give meaning to the path integral in sort
of an indirect way. The Fresnel integral is not literally an integral of a function against some
measure on the space of paths, just a functional defined on that space in a way that gives it
many of the properties we would expect from such an integral. In order for this to be useful, we
need to know that the 𝑓 just defined is in fact Fresnel integrable for nice choices of the potential
𝑉 . The paper “Functions in the Fresnel Class” by Chang, Johnson, and Skoug is a good reference
for this.

4 What Is It Good For?
The path integral describes exactly the samephysics as theHamiltonian formalism that’s usually
used for nonrelativistic quantummechanics, and anything that can be done in one picture can
also be done in the other. In particular, the set of systems that can be solved analytically in either
picture is pretty small: basically just free particles and particles in one of a small list of potentials,
most notably the quadratic potential that gives rise to the harmonic oscillator. Because it has
been written up well in somany other places, we won’t go over the path integral computation
for the quantum harmonic oscillator; if you’re interested you can find it, for example, in the
notes by Blau linked in the introduction.

4.1 The Classical Limit
Still, as oftenhappenswhenone is given twodifferentwaysof lookingat the samesituation, there
some things that are easier to see from the path integral point of view. One is the relationship
between quantum and classical physics: classicalmechanics arises, in some sense, as the ℏ→ 0
limit of quantummechanics, and the path integral formalism offers a particularly nice way to
see how this happens.

This picture starts from the stationary phase approximation for finite-dimensional integrals
of the form

∫
R𝑛

𝑔 (𝑥)𝑒 𝑖 𝑓 (𝑥 )/ℏ𝑑𝑥 . If ℏ is very small, we should usually expect that, in any bounded
region inR𝑛 , the exponential in the integrand is oscillating so quickly that the integral will be
very close to zero. This is the right picture except in the neighborhood of a critical point of 𝑓 ,
where the integral will instead resemble a Gaussian.

https://www.researchgate.net/publication/303491623_Functions_in_the_Fresnel_class
https://en.wikipedia.org/wiki/Stationary_phase_approximation
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This can be formalized when 𝑓 and 𝑔 are sufficiently nice. (In particular we require all the
critical points of 𝑓 to be nondegenerate.) The result is a formula of the form∫

R𝑛
𝑔 (𝑥)𝑒 𝑖 𝑓 (𝑥 )/ℏ𝑑𝑥 =

∑︁
𝑐 ∈𝐶 ( 𝑓 )

𝑔 (𝑐 )𝑒 𝑖 𝑓 (𝑐 )/ℏ𝐾𝑐 + 𝑜 (ℏ𝑛/2),

where𝐶 ( 𝑓 ) is the set of critical points of 𝑓 and 𝐾𝑐 depends only on the second derivatives of 𝑓
at 𝑐 . With somemore work, it is possible to extract a power series in ℏ for the error term.

This suggests an analogous picture for the path integral

⟨𝜓𝑞 ′,𝑡 ,𝜓𝑞,0⟩ = C
∫
𝐶 (𝑞 ′,𝑞 ;𝑡 )

exp
(
𝑖

ℏ
𝑆 [𝛾 ]

)
D𝛾 .

When ℏ is very small, the integral should be dominated by contributions from the paths𝛾 which
are critical points of the action 𝑆 . But these are exactly the solutions to the classical equations
of motion!

While this argument means that the classical path is the dominant contribution to the path
integral for small ℏ, that doesn’t directly imply that particles follow these classical paths in this
same limit. But it’s not too hard to give a very rough heuristic argument for this as well.

Suppose the initial state is given by some function𝜓 (𝑞, 0), and for any 𝑞 ′ and 𝑡 , suppose
there is a unique classical path𝛾𝑞 ′,𝑞 ;𝑡 which visits 𝑞 and time 0 and 𝑞 ′ at time 𝑡 . The stationary
phase argument tells us that

𝜓 (𝑞 ′, 𝑡 ) = A
∫

exp
(
𝑖

ℏ
𝑆 [𝛾𝑞 ′,𝑞 ;𝑡 ]

)
𝜓 (𝑞, 0)𝑑𝑞.

HereA is some constant that we will not worry about for the rest of this sketchy argument.
Now, suppose that the initial state is sharply peaked around some initial position 𝑞0 and

momentum𝑝0. (The latter conditionmeans that the Fourier transform of𝜓 (−, 0) is peaked.)
This means we can replace this 𝑞 integral with an integral over some small [𝑞0 − Δ𝑞, 𝑞0 + Δ𝑞],
over which we will replace 𝑆 with its linear approximation. But (I encourage you to check)
−𝜕𝑆/𝜕𝑞 [𝛾𝑞 ′,𝑞 ;𝑡 ] is themomentum of the particle at 𝑡 = 0 whenmoving along the classical path.
Calling this momentum𝑝cl (𝑞 ′, 𝑞), we conclude that

𝜓 (𝑞 ′, 𝑡 ) ≈ A
∫ 𝑞0+Δ𝑞

𝑞0−Δ𝑞
exp

(
− 𝑖
ℏ
𝑞 · 𝑝cl (𝑞 ′, 𝑞)

)
𝜓 (𝑞, 0)𝑑𝑞,

where we have absorbed the constant part of the linear approximation intoA.
Now, to make use of that fact that themomentum is sharply peaked around𝑝0, we perform

a Fourier transform, giving us:

𝜓 (𝑞 ′, 𝑡 ) ≈ A
∫ 𝑞0+Δ𝑞

𝑞0−Δ𝑞

∫
exp

(
− 𝑖
ℏ
𝑞 · 𝑝cl (𝑞 ′, 𝑞)

)
exp

(
𝑖

ℏ
𝑞 · 𝑝

)
𝜓̂ (𝑝, 0)𝑑𝑝 𝑑𝑞

= A
∫ 𝑞0+Δ𝑞

𝑞0−Δ𝑞

∫
exp

[
𝑖

ℏ
𝑞 · (𝑝 − 𝑝cl (𝑞 ′, 𝑞))

]
𝜓̂ (𝑝, 0)𝑑𝑝 𝑑𝑞.

The integrand will be close to zero if𝑝 isn’t close to𝑝0. But also, if𝑝 −𝑝cl (𝑞 ′, 𝑞) is at all big—
on the order of ℏ/Δ𝑞 or bigger— then the 𝑞 integral will be the integral of a rapidly oscillating
exponential, whichwill alsomake it very close to zero. We conclude that the onlyway for𝜓 (𝑞 ′, 𝑡 )
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to have any appreciable amplitude is if 𝑝0 is close to 𝑝cl (𝑞 ′, 𝑞), that is, if the classical motion
with initial position 𝑞0 andmomentum𝑝0 ends up at 𝑞 ′.

While this is a somewhat satisfyingpicture, the real valueaddedby thepath integral approach
in the low ℏ is not really primarily in verifying that quantummechanics reproduces classical
mechanics. More interesting— though beyond the scope of this article— are the higher-order
terms in the stationary phase approximation, which give corrections to the classical picture
when ℏ is small but not quite negligible, the so-called semiclassical approximation.

4.2 Symmetry
One large advantage to thinking in terms of path integrals— and the reason I’m including it in
this series of articles— comes from relativistic quantum field theory.

We’ll havemuchmore to say about this later in the series when we start exploring quantum
field theory properly, but put simply, because the path integral formalism is built out of the
Lagrangian rather than the Hamiltonian, it is easier to express it in a way that transparently
accounts for the symmetries of a system right from the start. For this reason, a lot of the com-
putations one needs to do in quantum field theory are a lot easier to write down in the path
integral language.

There’s not actually anything especially quantum about this observation. Hamiltonianme-
chanics, in both its classical andquantum forms, involves building some sort of time-translation
operator out of the Hamiltonian of the theory, and so in particular it requires one to pick a sin-
gle forward time direction. This requires breaking the Lorentz symmetry of special relativity,
whichmixes time and space coordinates. Lagrangianmechanics is easier to work with in a way
that doesn’t require such a choice. Something similar is true for many other symmetries and
constraints a theorymight have, which we’ll also hopefully see later on.

We’re going to leave this discussion at this very general point for now. We haven’t focused
on performing concrete calculations with the path integral here, primarily because they’re
written up well in many other places. When we do eventually come around to our discussion of
quantum field theory, though, the path integral will be an indispensible conceptual tool.
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