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Thermodynamics and Statistical
Mechanics

Nic Ford

1 Introduction
This article is part of a series on physics for mathematicians. It’s about the physics of macro-
scopic systems, objects on the scale that you might interact with in everyday life. While the
behavior of macroscopic objects should, in principle, be completely explainable in terms of
their microscopic components, it’s often far from clear how this is supposed to work. What
exactly does a quantity like temperature correspond to on themicroscopic level? How dowe
account for the fact that manymacroscopic phenomena seem to happen in only one direction,
while themicroscopic physics is completely time-reversible?

There are two closely related areas of physics that touchon these questions: thermodynamics
is the high-level description of macroscopic physics, and statistical mechanics is the framework
by which we can extract this description from the underlyingmicroscopic laws. This is the part
of physics that has themost to say about the sorts of physical objects human beings ordinarily
interact with, and given how large and complicated these objects are, it’s surprising howwell it
can be understood.

Thermodynamics and statistical mechanics might be further divided into the equilibrium
and non-equilibrium theories. The equilibrium theories are concerned with physical systems
that have reached the point where their macroscopic properties are not changing over time,
whereas the non-equilibrium theories describemoments when thesemacroscopic properties
are still changing. (In particular, how a system gets to equilibrium in the first place is a question
for non-equilibrium statistical mechanics.) We focus mostly on the equilibrium case, which is
muchbetter behaved theoretically, with just a fewqualitative comments on thenon-equilibrium
case. I may cover the non-equilibrium theory inmore detail in a future piece.

This article is sort of an odd fit for the series. Themathematics involved is less complicated
than the other articles in the series, but I still found this subject quite difficult to learn. Perhaps
because it’s so grounded in the “everyday world,” it doesn’t lend itself to the sort of crisp presen-
tationmathematicians tend to like, with everything following from a short list of axioms. I have
reluctantly concluded that a strictly axiomatic approach would bemore confusing than helpful,
so, while I have still tried tomake everything feel natural, there aremany points where some
input from the physical world is required tomake sense of things.

This difficulty is compounded by the fact that there isn’t really a consensus on the “correct”
foundations for statistical mechanics. There is a quote from the article “A Field Guide to Recent
Work on the Foundations of Statistical Mechanics” by Roman Frigg that I think sums up the
situation well:
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Unlike quantummechanics and relativity theory, say, SM [statistical mechanics]
has not yet found a generally accepted theoretical framework, let alone a canonical
formulation. What we find in SM is a plethora of different approaches and schools,
each with its own programme andmathematical apparatus, none of which has a
legitimate claim to bemore fundamental than its competitors.

I havemade a choice of theoretical framework which seems well-motivatedmathematically,
but there’s no reason to take that choice as an argument in favor of some philosophical position;
there definitely are alternatives. That same survey article is a good overview of the options.

A final difficulty is that, while a lot of work has been done on building a complete,mathemat-
ically rigorous version of statistical mechanics, this work is not at all complete. I have indicated
what can be done rigorously to the best of my knowledge, but along the path frommicrophysics
to thermodynamics we will sometimes have tomake the logical leap of just assuming that some
step works out the way we’d want it to. I’ve written a companion piece to this article in which I
analyze a very simple toymodel in which the whole process can be done rigorously from start
to finish, whichmight at least help you see how the picture is supposed to look formore realistic
systems.

With all that said, even the equilibrium version of statistical mechanics that we develop here
is shockingly useful; perhaps because it assumes so little about the details of themicrophysics,
the core ideas can be applied to a very large number of situations. In addition, an eventual goal
of this series of articles is to build up to a presentation of quantumfield theory, andmany pieces
of the quantum field theory story show up in a somewhat simpler form in statistical mechanics,
and so it’s worth getting a handle on it for that reason as well.

I found the following books and articles helpful when preparing this piece:
• An Introduction to Thermal Physics by Daniel V. Schroeder is an undergraduate physics
textbook, and it therefore doesn’t use anymathmore complicated than a partial derivative.
I found it to be a very good source of physical intuition, and I’d recommend it for that
reason; it should be a pretty easy read for anyone who has been following this series.

• Mathematical StatisticalMechanics byColin J. Thompson is abook fromthe1970’s pitched
at about the same level as this article. Unfortunately it was a bit difficult for me to find a
copy, but it is worth a read.

• Edwin Jaynes was a physicist who advocated a point of view on statistical mechanics that
I would call radically Bayesian. I don’t completely align with him philosophically, but his
perspective still influenced this article quite a bit, and I also just found him enjoyable to
read. I recommend the short article “Information Theory and Statistical Mechanics” and
the longer set of lecture notes “Where DoWe Stand onMaximum Entropy?”.

• Large deviation theory offers a useful perspective (that we won’t touch on here at all) on
the equilibrium distributions we will discuss in the second half of the article, and I found
two articles by Hugo Touchette useful for learning about it: “The large deviation approach
to statistical mechanics” and “Equivalence and nonequivalence of ensembles”.

• Modern Thermodynamics by John Denker is a somewhat loosely organized free book that
contains a lot of intuition that I found helpful.

• The survey article I quoted above is “A Field Guide to Recent Work on the Foundations of
Statistical Mechanics” by Roman Frigg. It’s a good place to get a sense of where philoso-
phers stand on some of the foundational questions that I only gesture at briefly in this
article.
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I am very grateful to JordanWatkins, Yuval Wigderson, and Harry Altman for many helpful
suggestions on earlier versions of this article.

2 Thermodynamics
Our ultimate goal is to describe howmacroscopic phenomena like temperature and pressure
arise from the very different-lookingmicroscopic description of physics that is supposed to un-
derlie it. Beforewedo this, though, I think it’s helpful tohave afirm ideaofwhat thismacroscopic
picture actually looks like so we can knowwhat it is we’re aiming for.

This section is an introduction to thermodynamics, the name for this macroscopic descrip-
tion of the physics of temperature, pressure, heat, work, and so on. We will work entirely at
the macroscopic level, with no reference to microphysics and with the irreversibility of the
dynamics “baked in” from the start.

Again, no attempt is made to give a strict axiomatic presentation. This is an emergent,
high-level theory and we’ll have to refer to actual physical objects a fair amount. If you would
like to see what a more rigidly axiomatic version of this story might look like, you can read
“The Physics andMathematics of the Second Law of Thermodynamics” by Lieb and Yngvason.
(They also have a shorter version of the piece called “A Guide to Entropy and the Second Law of
Thermodynamics”.)

2.1 Equilibrium and Thermodynamic States
Thermodynamics is a descriptionof physics on themacroscopic level, and as such it’s completely
agnostic about anything having to do with the fundamental constituents of matter. (In fact,
much of the theory was developed at a timewhen the idea thatmatter ismade of atomswas still
controversial!) The basic object of study is a system, which can be taken to refer to basically any
macroscopic object, from a box of gas on a table to a steam engine to the earth’s atmosphere.
We will often distinguish between a composite stystem, which can be divided into subsystems,
and a simple system which cannot. The decision of whether or how to divide a system into
subsystems depends on the problem you are trying to solve; youmight, for instance, choose
to divide a gas in a large container into small cubes and track the properties of each piece
separately, or just consider the gas as an indivisible whole.

Probably the central idea of thermodynamics (at least the way I am presenting it) is equi-
librium. Physically, a system is in equilibrium when the values of the relevant measurable
quantities havemostly stopped changing on the time scale you are interested in. At this level of
abstraction, equilibrium should be thought of as one of the fundamental concepts in the theory,
rather than as something expressible in terms of simpler notions.

Questions like how equilibration happens on the microscopic level, what time scale is
relevant, or how large a fluctuation can be before the system hasn’t “mostly stopped changing”
are not ones that thermodynamics answers. Instead, we will just assume that, given enough
time, every systemwill eventually come to equilibrium. Good examples of equilibration to keep
inmind are hot soup cooling down to room temperature on a table; or a gas, initially confined
to one half of a box, expanding to fill the whole box uniformly.

The state of a system in equilbrium can be specified by listing the values of some small num-
ber of thermodynamic variables. These variables are quantities like total energy, temperature,
pressure, volume, angular momentum, number of particles, and so on; the exact list of relevant
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thermodynamic variables depends on the system under consideration. The possible equilib-
rium states of a given system correspond to points on amanifold called the thermodynamic
state space, which for us will always be someR𝑛 ; the thermodynamic variables are then just
real-valued functions on the state space. Thermodynamic variables always correspond to quan-
tities that can bemeasured in an experiment that could actually be practically performed. A
quantity like “the pressure the gas exerts on the left wall of the box” is a suitable thermodynamic
variable; “the velocity in meters per second of the gas particle that was closest to the top of the
box at 10:00 this morning” is not.

It isbest to thinkof this setup—inwhich the systemisassumed to reachauniqueequilibrium
state characterized by a small number of thermodynamic variables— not as an assertion about
how the whole world works but as a rule for determining which systems we intend to analyze
with the tools of thermodynamics at all. We can say that a “thermodynamic system” is something
that behaves in this way; there certainly are non-thermodynamic systems in the world, and
thermodynamics is not a gooddescription of them! The claim that equilibration always happens
is sometimes somewhat playfully called the “minus-first law of thermodynamics.”

In a composite system, wemight speak of the value of some thermodynamic variable for
one subsystem or another. For example, in a system consisting of a hot bowl of soup together
with the cooler air around it, we can ask about the temperature of the air or the temperature of
the soup. If the soup and the air are allowed to interact in the way they would in the real world,
this composite system is not in equilibrium. (As we will see soon, at equilibrium they have the
same temperature.) Once the composite system has equilibrated we will often say that the soup
is at equilibriumwith the air. The zeroth law of thermodynamics is the assertion that this is
an equivalence relation; transitivity is really the only nontrivial claim here.

Note that it is therefore a slight violation of our rules to speak about the temperature of
the hot soup, since thermodynamic variables only have well-defined values for systems in
equilibrium! Nonetheless, this rule-breaking is completely pervasive, and is in fact necessary
to domuch of anything interesting with the theory. In this situation, you should imagine that,
while energy is flowing between the soup and the air, this happensmuchmore slowly than it
takes for the soup to equilibrate on its own, so at any moment in time we may pretend that
the soup is at equilibrium. Because it’s so much easier to describe equilibrium states than
non-equilibrium states, simplifying assumptions of this type will come up a lot.

The exact form of the state space — in other words, the answer to the question of which
variables suffice to describe the state of a system in equilibrium— is outside the purview of
thermodynamics itself. By writing down a complete list of thermodynamic variables for a
systemwe are asserting that this list contains enough variables to predict the future behavior
of the system for whatever purposes we’re interested in. Once we have such a list, the laws of
thermodynamics give us constraints on how the values of the variables can change, but they
don’t tell us which variables to use ahead of time.

It will often happen that the values of some thermodynamic variables will be completely
determined by the others. Such a relationship is called an equation of state. One famous
example of an equation of state is the ideal gas law, written 𝑃𝑉 = 𝑁𝑘𝑇 , which holds for a gas in
equilibriumwhich is sparse enough that interactions between the gas particles can be neglected.
Here 𝑃 is pressure,𝑉 is volume,𝑁 is the number of gas particles,𝑇 is the temperature, and 𝑘 is
Boltzmann’s constant. (Boltzmann’s constant is approximately 1.38×10−23 J/K;wewill see in the
statistical mechanics section that it plays a fundamental role in the theory.) Like the complete
list of thermodynamic variables, any equations of state are an input to thermodynamics, not a
prediction. Many equations of state can be derived using themachinery of statisticalmechanics,
and in fact we will do this for the ideal gas law at the end of this article.
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In general, there should be no expectation that the same list of variables that suffices to pick
out an equilibrium state will determine everything interesting about a non-equilibrium state.
For example, while a box of gas at equilibrium has a single temperature, if the temperature is
not uniform then the particular temperature distribution can certainly havemacroscopically
noticeable effects; and to describe the state of a container of water close to freezing, it’s probably
necessary to know something about the relative amounts of ice and liquid water at anymoment
in time.

For this and other reasons, non-equilibrium thermodynamics is more challenging to de-
scribe theoretically, and (inmy opinion) addressing some of these issues comes at some cost
to elegance. So, again, we’ll mostly stick to equilibrium thermodynamics in this article. The
prototypical equilibrium thermodynamics question is something like the following. Suppose a
system starts in an equilibrium state with some known values of the thermodynamic variables,
but then we change the constraints and allow it to come to equilibrium again. What are the
resulting values of the variables?

2.2 Energy and Entropy
While the exact list of thermodynamic variables depends on the problem, there are two that
will always show up. The first is energy, denoted by 𝐸 . This is the same quantity that is referred
to as “energy” in Newtonianmechanics. In particular, it is always conserved, which is usually
the main reason it’s interesting to keep track of. Within the context of thermodynamics, the
conservation of energy is sometimes called the first law of thermodynamics, although this
name is sometimes instead attached to a consequence of energy conservation that we will see in
just a moment.

(If you learnmore about thermodynamics, youmay encounter a quantity called “internal
energy,” denoted by𝑈 . This refers to the energy “contained within the system,” excluding the
kinetic and potential energy associated with themotion of the system’s center of mass. I don’t
find this distinction very helpful, especially for the ideas we will consider in this article. When a
clear distinction can bemade between𝑈 and 𝐸 , one can often just keep track of 𝐸 and just say
specifically which forms of energy are relevant for which purposes.)

In a composite system, it can be useful to talk about the energy of one subsystem or another,
and it is common to assume that the energy of the whole system is the sum of the energies
of its components. It’s important to realize that this is an approximation; in fact, unless the
components are completely isolated from each other, it is not possible to divide all of the energy
into subsystems in this way. Think of two bodies interacting via Newtonian gravity. The total
energy is the sum of three terms: the kinetic energy of the first body; the kinetic energy of the
second body; and the gravitational potential energy, which depends on the locations of both
bodies and so can’t be assigned to just one of them.

A common case in which this approximation is appropriate is when the subsystems are
in thermal contactwith one another. This means that they are able to exchange energy, but
that the energy associated with their interaction is very small compared to the energies of each
system separately and so can be neglected. A good example is a box of gas in contact with the
air. The energy of the gas grows with the volume of the box, but the energy associated with the
interaction grows with the surface area, and so for an appreciably-sized box it will be much
smaller.

The second important thermodynamic variable is called entropy, denoted by 𝑆 and usually
measured in units of energy divided by temperature, like J/K. Themost important thing about
entropy is the famous second law of thermodynamics. For our purposes, it says that for an
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isolated system, if we start in an equilibrium state, then change the constraints of the system
somehow and allow it to reach equilibrium again, the entropy of the final state is greater than or
equal to the entropy of the initial state.

Oncewe’ve defined temperature andheatwewill talk about howonemight actuallymeasure
entropy in practice. Later, in the section on statisticalmechanicswewill talk aboutwhat entropy
“actually is,” but at this level of abstraction it is just a thermodynamic variable to which the
second law applies. It might help, in fact, to temporarily set aside any ideas you may have
had, especially any having to do with it being a “measure of disorder,” until we can address
the question properly. (This perspective also has the advantage of being truer to the history—
thermodynamic entropy and the second law of thermodynamics predate any interpretation of
entropy in terms of statistics!)

Just like with energy, it is common to write the entropy of a composite system as the sum of
the entropies of each of its subsystems, and this is again just an approximation which is suitable
when the contact between the subsystems is light. As with energy, this is exactly true only when
the systems are completely isolated from each other. Because we lack amicroscopic definition
of entropy at this point, the additivity of entropy will just have to be postulated. (There are
also some exotic situations in which it’s not even approximately true, but for this article we will
assume that this never happens.)

This version of the second law—which only compares the entropies of two equilibrium
states and says nothing about what’s happening in the middle — might seem weaker than
you were expecting. Strictly speaking, though, saying anything stronger would require talking
about the thermodynamic state of a system that is out of equilibrium, and as we’ve discussed,
this is a much harder problem; defining thermodynamic entropy in the non-equilibrium case
is, depending on the assumptions one is willing to make, somewhere between difficult and
impossible.

However, it is sometimes necessary to take just one step into the non-equilibrium regime
when considering two systems in thermal contact. In this case, we assume that the time it takes
to exchange an appreciable amount of energy is much longer than the time it takes for each
system to equilibrate, so that we are justified in modelling the two systems as always being
separately in equilibrium, just with slowly changing values of the total energy.

In this situation, we have a slightly stronger version of the second law: the equilibrium state
of the composite systemmaximizes the sum of the entropies of the two systems separately. (A
less formal but often helpful way to think about this is as the claim that any state transition
which is compatible with the constraints of the problem and increases the entropy will happen
eventually.) This form of the second law will be helpful when we discuss temperature in just a
moment.

Suppose we take a system and increase its size by a factor of𝑚. Many thermodynamic
variables can be usefully placed into one of two categories based on how they behave in this
situation. We say a quantity is intensive if it stays the same under this rescaling, and extensive
if it alsomultiplies by a factor of𝑚. Extensive quantities includemass, volume, the number of
particles, energy, and entropy; intensive quantities include density, temperature, and pressure.

Most extensive quantities also add when forming a composite system; this is true of ev-
erything on this list, and in particular we have already assumed that it is true of entropy. In
the case of entropy, it’s important that we are asserting this additivity before the combined
system equilibrates; afterwards the entropymight be higher than the sum of the entropies of
the original component systems.

This can be leveraged to demonstrate a useful property of the entropy. Suppose we have
parameterized the state space using only extensive quantities, not including the entropy, and
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suppose that they are all conserved quantities. (For example, for an ideal gas, we might use
energy and volume.) Wemay then think of 𝑆 as a real-valued function on the resulting copy
of R𝑛 . Consider two points 𝑥 and 𝑦 representing two different systems, and let the notation
𝑚𝑥 denote the result of rescaling 𝑥 by a factor of𝑚. Then for any𝑚 ∈ [0, 1], the composite
system consisting of𝑚𝑥 and (1−𝑚)𝑦 has entropy𝑆 (𝑚𝑥) +𝑆 ((1−𝑚)𝑦 ) = 𝑚𝑆 (𝑥) + (1−𝑚)𝑆 (𝑦 ),
since entropy is extensive. After equilibrating, since the values of the coordinates are conserved
by assumption, we are at the point𝑚𝑥 + (1 −𝑚)𝑦 . The entropy can’t have decreased, so we
conclude that

𝑆 (𝑚𝑥 + (1 −𝑚)𝑦 ) ≥ 𝑚𝑆 (𝑥) + (1 −𝑚)𝑆 (𝑦 ),
that is, under our assumptions, the entropy is concave.

2.3 Temperature and Pressure
Many other thermodynamic variables—most notably the temperature— can be derived from
the energy and entropy. Suppose we find ourselves at an equilibrium state described by some
point 𝑥 in the state space. Consider a systemof coordinates around 𝑥 consisting of the entropy 𝑆
together with some number of additional thermodynamic variables𝑉1, . . . ,𝑉𝑛 , not including the
energy. Wewill assume that the𝑉𝑖 ’s are all quantities that are easilymeasureablemacroscopically,
like volume. A good example to keep in mind is an ideal gas in a box with a fixed number of
particles, for which 𝑛 = 1 and our list of variables consists of just the entropy and the volume𝑉 .
We will assume that the energy is not one of the𝑉𝑖 ’s.

Imagine then that the conditions change in some way— for example, a small amount of
energy is added to the gas by placing it over a flame for a short time— knocking the system
slightly out of equilibrium in such a way that, when it equilibrates again, we find ourselves at a
new point in state space very close to 𝑥 . We can express the difference in the energy of these
two equilibrium states in terms of the differences in the other variables:

𝑑𝐸 =
𝜕𝐸

𝜕𝑆
𝑑𝑆 +

𝑛∑︁
𝑖=1

𝜕𝐸

𝜕𝑉𝑖
𝑑𝑉𝑖 .

These partial derivatives are given conventional names:𝑇 := 𝜕𝐸/𝜕𝑆 is called the temper-
ature at 𝑥 , and 𝑃𝑖 := −𝜕𝐸/𝜕𝑉𝑖 is called a (generalized) pressure. (The “honest” pressure is
−𝜕𝐸/𝜕𝑉 , where𝑉 is the volume. Theminus sign is conventional.)

These names are very suggestive, and it’s worth explaining how they line up with the way
you expect things with these names to behave. Suppose you have two systems at different
temperatures𝑇1 and𝑇2, and you bring them into thermal contact with each other, so that they
are able to exchange energy but all of the𝑉𝑖 ’s stay fixed. Allow them to come to equilibrium.
Write 𝐸1, 𝐸2, 𝑆1, 𝑆2 for the energies and entropies of the two systems.

The total energy 𝐸 = 𝐸1 + 𝐸2 is conserved—we’re assuming the two systems can’t exchange
energy except with each other— so we conclude that

𝜕𝑆

𝜕𝐸1
=

𝜕𝑆1
𝜕𝐸1

+ 𝜕𝑆2
𝜕𝐸1

=
𝜕𝑆1
𝜕𝐸1

− 𝜕𝑆2
𝜕𝐸2

=
1
𝑇1

− 1
𝑇2

.

If𝑇2 > 𝑇1, we see that moving energy from the second system to the first would increase the
entropy, and vice versa if𝑇1 > 𝑇2. In order for the entropy to bemaximized, the tempetatures of
the two systemsmust be equal.

So, using the strong version of the second lawmentioned earlier, once the two systems have
reached equilibriumwith each other, the temperatures have to be the same. If, as we have agreed
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to assume, the entropy is a concave function of the energy at fixed values of the𝑉𝑖 ’s, then we
have the stronger conclusion that in the process of equilibrating, energy must flow from the
systemwith higher temperature to the one with lower temperature.

Concavity is useful for another reason. It’s often convenient to be able to switch which
variables you are using to parameterize the state space, and so it is helpful if, for example, each
energy corresponds to exactly one temperature. This follows from the fact that entropy is a
concave function of energy, because then 1/𝑇 = 𝜕𝑆/𝜕𝐸 is monotonic. Because 𝜕2𝑆/𝜕𝐸 2 =

(−1/𝑇 2) (𝜕𝑇 /𝜕𝐸 ), we see that the concavity implies that temperature increases with energy, as
onemight expect. Similarly, it implies that decreasing the volume should increase the pressure.

Again, in general, these assumptions can be violated. In the presence of phase transitions,
the argument we gave for concavity breaks down, theremight not be a one-to-one correspon-
dence between energies and temperatures, and there are systems one could write down for
which temperature can be negative or can decrease with energy. I hope to talk about all of this,
especially the theory of phase transitions, in a future article in this series, but for now, we will
continue to assume that the entropy is a concave, increasing function of the energy.

The temperatureof a systemcanbe thoughtof as ameasureof the tendency to spontaneously
give off energy to anything it is in contact with. It’s common to find less careful accounts of
temperature that imply that it’s somehow just “average energy in funny units,” so it’s important
to emphasize that this is not even a little bit true. For instance, a kilogramof air has far less energy
than a kilogram of water at the same temperature. (Part of the confusion, I think, stems from
the fact that for an ideal gas there is a linear relationship between the kinetic energy per particle
and the temperature. But this is just a fact about ideal gases, not a definition of temperature!
It is not true at all for other types of systems, and even for different ideal gases the constant of
proportionality can change.)

This picture also gives a good operational way tomeasure temperature: if we find some small
system (like themercury in a thermometer) for which some visible thermodynamic variable
changes with temperature, wemay bring it into thermal contact with the systemwe want to
measure, wait for them to come to equilibrium, and read the value of the other, visible variable.

As for the identification of pressure with −𝜕𝐸/𝜕𝑉 , imagine a gas in a box, one of the walls
of which is a piston that can move in and out, changing the volume of the box. Suppose the
surface area of the piston is 𝐴. Now, imagine that we push on the piston by applying a force 𝐹 ,
slowly enough so that the entropy doesn’t change (more on this assumption later), moving it
inward by a distance 𝑑𝑥 . We have changed the volume by −𝐴𝑑𝑥 and donework on the gas in
the amount 𝐹𝑑𝑥 , and our assumptions imply that this is the only change in the energy, so

𝐹𝑑𝑥 =
𝜕𝐸

𝜕𝑉
𝑑𝑉 = −𝜕𝐸

𝜕𝑉
𝐴𝑑𝑥,

and we conclude that −𝜕𝐸/𝜕𝑉 is the force per unit area, the usual definition of pressure.

2.4 Heat andWork
Putting the definitions of temperature and generalized pressure back into the formula that led
us to define them, we get

𝑑𝐸 = 𝑇𝑑𝑆 −
𝑛∑︁
𝑖=1

𝑃𝑖𝑑𝑉𝑖 .

Remember that this is a statement about the relationship between different equilibrium states
of the system, since that’s what is represented by points in the thermodynamic state space, not
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a general formula for what happens when the state of a system changes in time. We can, though,
draw a curve to represent the trajectory of a system over time if the change is quasistatic, which
means that the change is slow enough that the system comes back to equilibrium over the
course of the change faster than any appreciable change can occur. In this situation we can
more or less safely model the system as though it’s just in equilibrium the whole time, even
though of course it must leave equilibrium a little bit in order for the state to change at all.

Whenmoving quasistatically from one equilibrium state to another, it is common to refer
to the first term as heat (𝑄 ) and the sum of the rest of the terms aswork (𝑊 ). (Note that the
words “temperature” and “heat” mean different things in thermodynamics: heat is a form of
energy; temperature is not!) It can sometimes be useful to separate out heat in this way, as the
energy that has moved “due to” a difference in temperatures, and we just saw in our discussion
of pressure that it can also be worthwhile to identify the second part with work. A lot is made
in thermodynamics textbooks of the fact that, while 𝑑𝐸 is an exact 1-form, the heat and work
individually are not; in particular there’s no quantity corresponding to the “amount of heat in a
system.”

This version of the formula— relating the change in energy to heat andwork— is sometimes
referred to as the first law of thermodynamics. I think it’s usually less confusing to just not take
heat and work seriously as “fundamental” notions and think first about energy and entropy,
worrying about whether we want to divide up changes of energy like this only later. From this
perspective, the first law really is just conservation of energy, and the other formula constitutes
the definition of temperature and pressure.

The presentation I’ve chosen here centers energy and entropy and derives all the other inter-
esting thermodynamic quantities from them, but this is not how these ideas arose historically.
Amore historical presentation would define temperature operationally using the procedure
alluded to earlier where we equilibrate with a thermometer system. (The zeroth law would then
allow us to argue that this is well-defined.) The division of the change of energy into heat and
work is similarly practical: work is energy that goes towardmovingmacroscopic objects around
— that is, changing the values of what we called the𝑉𝑖 ’s — and heat is the portion of the change
in energy that isn’t attributable to work. (In particular, energy transferred between systems at
different temperatures while holding all the other variables fixed is all heat, since by hypothesis
no work is being done.)

There are versions of the second law that don’t directly mention entropy. “Kelvin’s second
law” says that there is no cyclic process whose only effect is to convert some amount of heat into
work; “Clausius’s second law” says that there is no cyclic process whose only effect is tomove
heat from a cold reservoir to a hot one. One can then prove our version of the second law in two
steps. First, one can show from either of these statements that, for a quasistatic change of state,
𝑄/𝑇 is an exact 1-form. We can use this to define entropy (up to an additive constant) by setting
𝑑𝑆 = 𝑄/𝑇 . One then shows that if this 𝑆 could decrease, one could construct a cyclic process
violating whichever version of the second law was chosen. This is the presentation followed in
Thompson’s book, which I recommend if you are interested in it.

Entropy defined in this way is only fixed up to an additive constant, and this constant can be
fixed bymaking a choice for the value of 𝑆 at a single point. The third law of thermodynamics
says that entropy of any system at a temperature of zero is the same, regardless of the details of
the system. (Conventionally, this system-independent value is taken to be 0.) The third law is
not especially relevant to anything else we’ll do in this article— in fact, it doesn’t seem to come
upmuch at all — so we won’t discuss it any further here.

I mentioned earlier that we can identify the heat with𝑇𝑑𝑆 when the change is quasistatic.
When non-equilibrium processes are involved, this identification can fail if we also want to
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take “heat” to mean “𝑑𝐸 minus work.” There is a nice example of this that I’m stealing from
Scroeder’s book. Imagine a gas in a box with a piston on one end. If youmove the piston very
quickly, faster than the typical speed of the gas particles, some of the particles will bunch up
behind the piston and push back on it, requiring you to push harder to get the piston tomove.
If we move the piston a short distance in this violent way, and then allow the gas to come to
equilibrium again, we find that the work we had to do wasmore than −𝑃𝑑𝑉 , and the heat is
therefore less than𝑇𝑑𝑆 . This process has, in other words, createdmore entropy than can be
accounted for just by whatever heat was transferred at the same time. Because it’s impossible to
get the volume to change without doing at least 𝑃𝑑𝑉 work, we always have𝑄 ≤ 𝑇𝑑𝑆 .

2.5 Free Energy and Enthalpy
The second law of thermodynamics says that entropy cannot decrease in an isolated system,
butmost real systems are not anywhere close to being isolated. In a situation like this, where the
entropy of the system alone won’t let you usefully apply the second law, it helps to keep track
of a slightly different set of thermodynamic variables. For simplicity, we’re going to assume
throughout this section that there is only one “additional” thermodynamic variable, the volume
𝑉 .

Let’s first consider a systemwhich ismechanically isolated, that is, prevented from doing
any work, but which is allowed to exchange energy with some environment that is so large that
its temperature𝑇 doesn’t change appreciably when it exchanges energy with the system. (Such
an environment is called a heat bath.) Since the whole point of this exercise is to keep track
of the system in the process of equilibrating, we can’t assume that it’s in equilibrium over the
course of this process, and so we can’t apply the formula 𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 from the previous
section. (If you like, imagine that it’s composed of several subsystems in the process of coming
into equilibriumwith each other as well as with the environment; these subsystems are free
to transfer energy among themselves as long as the system as a whole remainsmechanically
isolated.)

In the language of the previous section, since no work is done, any energy transferred
between the system and the environment takes the form of heat. We will assume that the
environment equilibrates faster than it takes for an appreciable amount of heat to be transferred
in this way (i.e., the state of the environment changes quasistatically) so if some infinitesimal
amount of heat 𝑑𝐸env = −𝑑𝐸sys moves from the system to the environment, we have that
𝑑𝑆env = 𝑑𝐸env/𝑇 . (That is, because the environment, unlike the system, is in equilibrium the
whole time, we are free to apply the formula for 𝑑𝐸 to it.) But the total entropy of the system
and the environment can’t decrease, whichmeans that

𝑑𝑆sys ≥ −𝑑𝐸env/𝑇 = 𝑑𝐸sys/𝑇 .

So, if we define theHelmholtz free energy of the system as 𝐹 = 𝐸 −𝑇𝑆 the above inequality
can be written

𝑑𝐹sys
𝑇

≤ 0,

and we therefore conclude that for a mechanically isolated system in contact with a heat bath
at constant temperature, the Helmholtz free energy cannot increase. This is our “replacement”
for the second law in this case.

Let’s now relax the constraint that𝑇 is constant. We can write a useful expression for the
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change in the equilibrium value of 𝐹 directly from the definition:

𝑑𝐹 = 𝑑𝐸 −𝑇𝑑𝑆 − 𝑆𝑑𝑇

= −𝑆𝑑𝑇 − 𝑃𝑑𝑉 .

This is like the formula for 𝑑𝐸 , except that we have interchanged the 𝑆 and𝑇 variables in the
formulaand introducedaminus signon that term. Compare theexpressions for thermodynamic
variables in terms of partial derivatives that we get from the formulas for 𝑑𝐸 and 𝑑𝐹 :

𝑇 =
𝜕𝐸

𝜕𝑆

����
𝑉

𝑆 = − 𝜕𝐹

𝜕𝑇

����
𝑉

𝑃 = − 𝜕𝐸

𝜕𝑉

����
𝑆

𝑃 = − 𝜕𝐹

𝜕𝑉

����
𝑇

.

(Here we have written which variables are held constant in a partial derivative using a subscript
on the right.) The procedure that turns 𝐸 into 𝐹 is a simple example of a Legendre transform;
this is also how wemove between velocity andmomentum coordinates whenmoving between
Lagrangian and Hamiltonianmechanics.

The name “free energy” comes from analyzing the situation when the system is not me-
chanically isolated, but is still in contact with a heat bath at constant temperature𝑇 . Since any
energy that is transferred in the form of heat is (by definition) useless for movingmacroscopic
objects around, we’d like to know howmuchwork can be done during this process. We have
𝑑𝐹 = 𝑑𝐸 −𝑇𝑑𝑆 = 𝑄 +𝑊 −𝑇𝑑𝑆 . I encourage you to repeat the analysis that began this section
and conclude that𝑄 ≤ 𝑇𝑑𝑆 , which implies that 𝑑𝐹 ≤𝑊 .

In particular, when both 𝑑𝐹 and𝑊 are negative, we conclude that the amount of work that
can be performed by the system (while keeping the temperature constant) is bounded by the
change in its Helmholtz free energy, so the 𝑑𝐹 energy is “free” during this process in the sense
of being available to do work. Conversely, just absorbing heat can increase 𝐸 , but I need to do
work on the system to increase 𝐹 .

A similar analysis carried out for a system in an environment at constant temperature and
pressure (but whose volume can change in addition to its energy) leads us to define

𝐺 = 𝐸 −𝑇𝑆 + 𝑃𝑉 ,

the Gibbs free energy, which is the Legendre transform of 𝐸 with respect to both the en-
tropy/temperature and volume/pressure pairs of variables. A similar conclusion about the
second law applies, as does a similar conclusion about the amount of work that can be done
if we also count the 𝑃𝑑𝑉 contribution to 𝑑𝐸 as “useless” along with𝑄 ; in a constant-pressure
environment, the expansion and contraction of the container happens “automatically” in just
the same way as heat transfer in a constant-temperature environment.

The Legendre transform of 𝐸 with respect to just the volume/pressure variables is written

𝐻 = 𝐸 + 𝑃𝑉 ,

and it’s called enthalpy. The enthalpy is a useful variable to keep track of in settings (chemical
reactions are a common example) where you are interested in keeping track of themovement of
energy and you have control of the pressure but not the volume of the system; in such a situation
the systemmight do work on its surroundings in the process of expanding, and it helps to keep
track of something that’s insensitive to such a change.
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2.6 The Carnot Cycle
We’ll close this section by considering a classic application of the ideas we’ve built so far: an
analysis of howmuch energy you can extract from a heat engine. A heat engine is any device
that extracts energy from two large systems at different temperatures and uses it to perform
work. We will be looking at a particular process for accomplishing this called the Carnot cycle,
but many of our conclusions will apply equally to all heat engines.

The setup for a heat engine consists of three pieces: some large amount of some hot sub-
stance at temperature𝑇hot, called the hot reservoir; a cold reservoir at temperature𝑇cold; and a
smaller amount of gas called theworking fluid. By repeatedly exposing the working fluid to
the two reservoirs to change its temperature, we will use the resulting changes in its volume to
performwork. (You can imagine that one of the walls of the working fluid’s container is a piston
that the fluid pushes on when it expands, and the piston is attached to some object you want to
move.) To keep the expected relationships between the thermodynamic variables straight, it
can help to imagine that the working fluid is an ideal gas, so that 𝑃𝑉 = 𝑁𝑘𝑇 always, but this
isn’t required for the analysis to work.

Write𝑄hot for the heat transferred from the hot reservoir to the working fluid during a cycle,
𝑄cold for the heat transferred from the working fluid to the cold reservoir, and𝑊 for the total
net work performed by the engine over a whole cycle. We define the efficiency of the engine as
the work extracted divided by the energy we need from the hot reservoir, that is,

𝑒 =
𝑊

𝑄hot
=
𝑄hot −𝑄cold

𝑄hot
.

We assume that the two reservoirs have fixed volumes, whichmeans that the entropy of the
hot reservoir changes by

Δ𝑆hot = −𝑄hot
𝑇hot

,

and similarlywith the opposite sign for the cold reservoir, since the only change in the reservoir’s
energy comes from the𝑇𝑑𝑆 term and𝑇 is presumed to be constant. The working fluidmust
return to its original state at the end of a cycle (this is a hypothesis of this whole setup) so in
particular its entropy doesn’t change.

The process of going through a cycle might create some entropy in the environment sur-
rounding the engine, though. We therefore get from this computation and the second law
that

𝑄cold
𝑇cold

− 𝑄hot
𝑇hot

≥ 0,

which after a quick computation yields a bound on the efficiency:

𝑒 ≤ 1 − 𝑇cold
𝑇hot

,

with equality if and only if the total entropy stays the same over the course of a whole cycle.
The Carnot cycle serves as an existence proof that getting arbitrarily close to this bound is

possible, at least in principle. (In practice, a Carnot engine would run so slowly as to be basically
useless, but it would be efficient the sense just defined.) Every step is assumed to be quasistatic,
allowing us to use the formula 𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 from earlier.

The Carnot cycle consists of four steps, repeated, as the name suggests, in a cycle:
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1. With the temperature of the working fluid just slightly below𝑇hot, place it in contact with
the hot reservoir and allow energy to flow from the hot reservoir to the fluid. In order
to keep the temperature of the gas from changing, we allow its volume to expand. This
process is called isothermal expansion. The working fluid has absorbed some heat from
the hot reservoir and converted some but not all of that energy to work.

2. Next, we disconnect the working fluid from the hot reservoir, and we allow it to expand
somemore. Since the working fluid is no longer absorbing any heat, this has the effect of
lowering its temperature. We assume that this is done at constant entropy, a reasonable
assumption if the fluid is thermally isolated during this process and the movement of
the piston is frictionless. This step is called isentropic expansion. We do this until the
working fluid’s temperature is just above𝑇cold.

3. Next, we place the working fluid in contact with the cold reservoir and allow it to contract,
so that its temperature stays the same. This is isothermal compression.

4. Finally, in order to get the gas back to its original state, we disconnect the working fluid
from the cold reservoir and allow it to compress somemore, until its temperature and
volume are both back to their original values. This is isentropic compression.

It’s common to draw a picture of how 𝑃 and𝑉 change over the course of these steps on a
so-called “𝑃𝑉 -diagram.” This is what the four steps look like for an ideal gas.

4
1

23

P

V

The red and blue lines are lines of constant𝑇 and constant 𝑆 , called isothermal curves and
isentropic curves respectively. (Note that, while the entropy of the system and the reservoirs
together never changes over the course of a cycle— another way of saying that the Carnot cycle
is reversible— the entropy of the system alone does change during the isothermal expansion
and compression phases as it exchanges heat with the reservoirs.) To draw the isentropic curves,
I made use of the formula 𝐸 = 3

2𝑁𝑘𝑇 for the energy of a monatomic ideal gas, which we will
also derive in the statistical mechanics section; it’s a nice exercise to see how this produces a
formula relating 𝑃 and𝑉 in the isentropic case.

During the expansion phases the working fluid does work, and during the compression
phaseswork is done on theworking fluid. But, since the pressure is higher during the expansions
than the compressions, the net work done by the fluid is positive. This necessarily means that
the fluid absorbs more heat from the hot reservoir than it gives to the cold reservoir. The exact
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amount of work is the integral of𝑃𝑑𝑉 along the curve in the diagram, which by Green’s theorem
is equal to the area of the region it encloses.

If, in fact, the temperature of the working fluid is close enough to the temperatures of
the reservoirs that no appreciable entropy is created there, and if the other expansion and
compression steps are in fact isentropic, then entropy will in fact be completely conserved over
the course of a whole cycle. In this (idealized) situation, the inequality we calculated above will
actually be an equality, and so the efficiency of the engine will in fact meet the bound.

At any rate, though, if we run the Carnot cycle over and over, the net effect is that heat flows
from the hot reservoir to the cold reservoir, and unless more energy is being poured into the
reservoirs from the outside this will shrink the difference between their temperatures. (We’ve
modeled the reservoirs as being so large that their temperatures don’t change when they give
off or absorb heat, but this is only an approximation.) The engine is only useful as long as this
temperature difference can bemaintained.

3 Statistical Mechanics
We now switch our focus to a discussion of statistical mechanics. This is the framework that
describes how thermodynamics arises from themicroscopic laws of physics, but it would be
amistake to think of that as its only function, or even its primary function. A description of a
system on the level of statistical mechanics is muchmore informative than a thermodynamic
description, and the success of the statistical-mechanical framework rests on the fact that the
details of this description—beyond themere fact of thermodynamic behavior—are themselves
well-confirmed by experiment.

As a very simple example, we will see that the statistical-mechanical machinery allows us to
prove the ideal gas law as a theorem. But this should be seen as just the beginning. While here
we’llmostly be concernedwith just setting up themachinery, I hope to explore its consequences
muchmore in a future article in this series.

3.1 States as Distributions on Phase Space
Our presentation of statistical mechanics will be built out of classical, nonrelativistic Hamil-
tonianmechanics. (There is also a theory of quantum statistical mechanics, which we won’t
touch on in this article.) We’ll very briefly recall how this theory works; there is an article in this
series you can read for more details.

The state of a system corresponds to a point in phase space, which we will denote by 𝑋
and which is usually the cotangent bundle of configuration space 𝑄 . We will assume that𝑄
is a compact manifold; imagine, for example, a gas confined to a finite box. Phase space has
the structure of a symplectic manifold, and in the cotangent bundle case, if we have local
coordinates 𝑞𝑖 and corresponding coordinates𝑝𝑖 on the cotangent spaces, the symplectic form
is 𝜔 =

∑
𝑖 𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 . The dynamics — the rules for how the system evolves in time — are

determined by a real-valued function on 𝑋 called theHamiltonian𝐻 . Using the symplectic
form, we may turn 𝑑𝐻 into a vector field and the resulting Hamiltonian flow produces the
dynamics. This flow preserves both 𝜔 and𝐻 . As a function of the state,𝐻 is the total energy,
and so we see that energy is conserved.

The phase space for a macroscopic system has a truly enormous number of degrees of
freedom; it’s not even remotely practical to learn where every single particle is at any time.
Instead, in statistical mechanics we represent our knowledge of the state of the system as

http://nicf.net/articles/hamiltonian-mechanics/
http://nicf.net/articles/hamiltonian-mechanics/


Section 3 Statistical Mechanics 15

a probability distribution on 𝑋 . As in our discussion of thermodynamics, we will mostly be
concernedwith equilibriumstatisticalmechanics, and soourmain taskwill be tofindprobability
distributions we can use to represent an equilibrium state and extract the thermodynamic
variables like entropy, temperature, and so on from it.

On any symplectic manifold of dimension 2𝑛 we can produce a volume form, and therefore
ameasure, by taking 𝜔∧𝑛 . The resultingmeasure is called the Liouville measure, which we’ll
write 𝜇𝐿 . If𝑝1, . . . , 𝑝𝑛 , 𝑞1, . . . , 𝑞𝑛 are local coordinates in which 𝜔 =

∑
𝑖 𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 , then wemay

use the𝑝𝑖 ’s and 𝑞𝑖 ’s to pull back the Lebesguemeasure fromR2𝑛 , and it will coincide with the
Liouville measure. Because Hamiltonian flows preserve 𝜔, they also preserve 𝜇𝐿 , that is, the
Liouvillemeasure is preserved by time translation. This result is often called Liouville’s Theorem.
The Liouville measure will play a crucial role in our construction of equilibrium distributions.

The use of probability distributions also neatly addresses another possible difficulty. The
task of extracting thermodynamics from themicroscopic laws of physics seems to face an insur-
mountable problem: the laws of physics have a time-reversal symmetry, but in thermodynamics
the approach to equilibrium and increasing entropy happen in only one time direction. This
objection forces us to slightly weaken our claim. We can’t claim that it’s impossible to end up in
a state with lower entropy— after all, you can get a path with this property simply by reversing
one in which entropy increases— instead, we claim it’s very improbable. The time symmetry is
then broken by the fact that our initial measurements of the system constrain our knowledge of
the initial state of the system rather than the final state. (There is muchmore on the topic of
how this resolves the problem in the companion piece.)

Not every imaginable system behaves thermodynamically, and so this equilibrium-seeking
behavior can’t somehow follow directly fromHamiltonianmechanics on its own. Ideally, we
would be able to list some reasonable conditions on the Hamiltonian and use them to give
a completely rigorous account that goes directly from Hamiltonian mechanics to a proof of
thermodynamic behavior with no gaps. Unfortunately, even in cases where we expect it to
happen, this seems wildly out of reach. While it’s possible to provide such an account in some
very simple, unrealistic models, most of the time we assume that the dynamics are such that
equilibrium exists and that (under some suitable probability distribution) the vast majority of
initial states end up there.

The story about how this is supposed to happen has two parts. The first is the claim that,
after we have fixed our list of thermodynamic variables and our probability distribution, an
overwhelmingly large fraction of the states will have values for the thermodynamic variables
lying in a very small range. We therefore refer to the expected value of each variable as its
“equilibrium value.”

This half of the story can be established rigorously in some cases. A helpful picture is to
imagine dividing the system into a large number of small pieces (but still much larger than a
single particle). It is often the case that the thermodynamic variable in question can be written
as a sum over all the pieces of some quantity that depends only on each piece, plus a small error
term. If you can do this, and if these per-piece quantities are sufficiently close to independent
under your chosen equlibrium distribution, then the law of large numbers should lead you to
expect this sharply peaked behavior. There are many results which, under certain assumptions
on the form of the Hamiltonian, prove rigorous bounds of this form, but we won’t go over them
here. The standard reference for this is the book StatisticalMechanics: Rigorous Results byDavid
Ruelle. (I found it clearly written, but be aware that it was published in 1969.)

The second part of the story is that, if the dynamics are “chaotic” enough that most states
get jostled around phase spacemore or less randomly, an arbitrary state is likely to eventually
end up in the large region of phase space where the values of the variables are close to their

http://nicf.net/articles/toy-thermodynamic/
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equilibrium values, and a state in this large region is likely to stay there. In particular, the time
symmetry we discussed earlier is broken not by the laws ofmotion but by the initial condition: if
we assume that the system starts in a state with a priori unlikely values for the thermodynamic
variables, we conclude that they will move toward their equilibrium values simply because that
is where the vast majority of states end up nomatter what. Unfortunately, proving that this sort
of behavior actually occurs seems completely out of reach in any realistic model, and so we are
forced to just assume it.

Throughout this section, we will often refer to both probability measures (denoted by some
form of the symbol 𝜇) and probability densities (some form of𝑝). Unless indicated otherwise,
the densities will always be densities with respect to the Liouville measure, that is, when we say
that somemeasure 𝜇𝑖 has density𝑝𝑖 , wemean

𝜇𝑖 (𝐴) =
∫
𝐴

𝑝𝑖 (𝑥)𝑑𝜇𝐿 (𝑥).

3.2 TheMicrocanonical Distribution
Ourmain task in setting up equilibrium statistical mechanics is to choose probability distribu-
tions to represent a system at equilibrium. The first equilibrium distribution we will consider
will be for an isolated system, that is, one which is completely cut off from its environment, and
so in particular can’t exchange any particles or energy with anything else. For such a system, the
total energy is exactly conserved, so whatever distribution we end up using will be supported
on some constant-energy hypersurface Σ𝐸 := {𝑥 ∈ 𝑋 : 𝐻 (𝑥) = 𝐸 }. We will assume throughout
that Σ𝐸 is compact, an assumptionmademore reasonable by the assumed compactness of𝑄 .

An equilibrium distribution ought to be time-symmetric, that is, to be preserved when time
is run forward. The Liouville measure has precisely this property, so we can use it to build a
measure on Σ𝐸 : restrict the Liouville measure to {𝑥 ∈ 𝑋 : 𝐸 − Δ𝐸 ≤ 𝐻 (𝑥) ≤ 𝐸 + Δ𝐸 }, divide
by 2Δ𝐸 , and let Δ𝐸 go to zero. We can call the resultingmeasure on Σ𝐸 the restricted Liouville
measure. BecauseΣ𝐸 is compact, its totalmeasurewill befinite, andsowecanbuildaprobability
distribution by simply dividing by this total measure. We call the result themicrocanonical
distribution of energy 𝐸 , which we’ll write 𝜇𝑚

𝐸
.

If we work in coordinates in which the symplectic form looks like∑
𝑖 𝑑𝑝𝑖 ∧ 𝑑𝑞𝑖 , this measure

does not just give the “surface area” of a subset of Σ𝐸 . Rather, I encourage you to show that the
measure of some subset 𝐴 ⊆ Σ𝐸 is given by

𝜇𝑚
𝐸 (𝐴) = 1

Ω𝐸

∫
𝐴

𝑑𝑛−1𝑥

|∇𝐻 | ,

whereΩ𝐸 =
∫
Σ𝐸

𝑑𝑛−1𝑥/|∇𝐻 | is the total measure of Σ𝐸 under the restricted Liouville measure,
and the surface areameasure𝑑𝑛−1𝑥 and the gradient∇𝐻 are computed in the given coordinates.

A natural question to ask at this point is to what extent this particular distribution is “forced”
on us. Are there other distrbutions that are preserved by the dynamics that we could have used
instead? Because energy is conserved, we canmultiply the Liouville measure by a function of𝐻
and the resulting measure would also be preserved by the dynamics. But I encourage you to
check that this actually would not change themicrocanonical distribution at all.

There is onemore interesting case, though: theremight be some conserved quantity other
than the energy that we have failed to keep track of. (For example, for a gas in a perfectly
cylindrical container, we would need to think about the angular momentum about the central
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axis.) In this case, the surfaces on which that quantity takes a constant value will be separately
preserved, and so we would be free tomultiply 𝜇𝑚

𝐸
by any function which only depends on the

value of the conserved quantity. In such a situation, wemight also fix the value of that quantity
as well, and build in an analogous way a distribution supported on the surface on which both
the energy and this new quantity are fixed.

For simplicity, we’ll assume for the rest of this discussion that there are no such extra con-
served quantities to worry about. Even in this case, there is no general proof that 𝜇𝑚

𝐸
is the

unique probability measure on Σ𝐸 preserved by the dynamics. In fact, as far as I know, there is
no airtight argument that the microcanonical distribution is the only “correct” one to use to
describe our situation, nor even complete agreement about what such an argument would even
entail. I think it’s best to regard the choice of themicrocanonical distribution as a postulate of
statistical mechanics. It’s one of the building blocks of the theory, and we can test the theory
against experiment to see howwell it describes reality.

Earlier, when describing why it is plausible that most systems will approach equilibrium, we
said that wewill assume that, formost states, the values of thermodynamic variables will be very
close to their equilibrium values. This amounts to assuming that, under themicrocanonical
distribution, those variables are very sharply peaked around their expected values. (In other
words, we are using the microcanonical distribution to decide what “most” means.) Our as-
sumption about the approach to equilibrium then amounts to the claim that, if we start with
some other distribution and evolve it forward for a long enough time, then the expected values
of our variables will tend toward their expected values under themicrocanonical distribution,
and their variances will become small.

3.3 Entropy and Information Theory
It’s relatively straightforward to see how energy is supposed to emerge from this statistical-
mechanical framework: for an individual point in phase space, it’s the same concept as in
Hamiltonianmechanics, and to a probability distribution we can assign the expected value of
this same quantity. Many thermodynamic variables, like angular momentum, volume, or the
number of particles, can be identified with an expected value in the same way.

But entropy is different: in our framework, entropy will not be a property of an individual
point in phase space but of a probability distribution as a whole. (This is therefore also true of
quantities that are derived from entropy, like temperature.) The quantity we’ll use to represent
thermodynamic entropy is, in fact, almost identical to the quantity called “entropy” in informa-
tion theory, so we’ll give a lightning-fast review of this concept now. This may not be enough
if the concept is brand new to you. I encourage you to seek out a more detailed explanation
elsewhere in such a case.

We’ll first consider probability distributions on a finite set. LetΩ be a finite set and consider
a probability distribution 𝑝 on Ω, which amounts to a nonnegative real number 𝑝𝑖 for each
𝑖 ∈ Ω with ∑

𝑖 𝑝𝑖 = 1. For each 𝑖 , we say that the surprisal of the result 𝑖 under 𝑝 is − log𝑝𝑖 .
It’s useful to think of this as representing howmuch information you have gained when you
take a random sample from𝑝 and see that it is 𝑖 . The logarithm is there tomake it additive for
independent samples.

The entropy of𝑝 is then the expected value of the surprisal:

𝑆info [𝑝] = −
∑︁
𝑖 ∈Ω

𝑝𝑖 log𝑝𝑖 ,

where the convention is that if some 𝑝𝑖 = 0 then it contributes zero to the sum. The entropy
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should be thought of as measuring of howmuch information, on average, you gain when you
learn the identity of a random sample from 𝑝 . This means it’s a measure of ignorance: lower
entropymeans knowing that the data are distributed according to𝑝 is already very informative,
so there is not much more you can learn when you see a new sample. The lowest-entropy
distribution onΩ is the one concentrated at a single point, which has entropy 0; highest is the
uniform distribution, which has entropy log |Ω|.

There is an extra complication that arises for continuous probability distributions. If𝑝 now
represents a probability density, it’s tempting to define the entropy as −

∫
Ω
𝑝 (𝑥) log𝑝 (𝑥). But

sadly this can’t work: a probability density is only well-defined with respect to a background
measure, and the choice of measure will affect the value of this integral. (A good sanity check is
that while probabilities are unitless, probability densities have units of inverse volume, and so
it is inappropriate to take their logarithms.) Without making any additional choices, there is no
coherent way to extend the concept of entropy to the continuous setting.

If we permit ourselves to fix a measure 𝜇𝐵 in the background, though, we can define the
relative entropy of ameasure 𝜇 with respect to 𝜇𝐵 as

𝑆info [𝜇 | |𝜇𝐵 ] := −
∫
Ω
log

(
𝑑𝜇(𝑥)
𝑑𝜇𝐵 (𝑥)

)
𝑑𝜇(𝑥).

(Youmay have seen this definitionwithout theminus sign, especially under the name “Kullback-
Leibler divergence.” It is conventional to include it here so that, when we eventually discuss the
second law, larger entropies still have the samemeaning as in thermodynamics.) Here 𝑑𝜇/𝑑𝜇𝐵

denotes the Radon-Nikodym derivative; if we are given a third “reference” measure 𝜇𝑅 with
respect to which both 𝜇 and 𝜇𝐵 are absolutely continuous, we can also write this as

−
∫
Ω
𝑝 (𝑥) log

(
𝑝 (𝑥)
𝑝𝐵 (𝑥)

)
𝑑𝜇𝑅 (𝑥),

where𝑝 and𝑝𝐵 are densities with respect to 𝜇𝑅 .
It’s again useful to think of this in information-theoretic terms: if the backgroundmeasure

is taken to represent the position of total ignorance, then the relative entropy represents how
much information we gain on average when we see a sample from 𝜇. For the same reason as in
the finite case, it is useful to think of the low-entropy distributions as themore “informative”
ones. Unlike entropies on finite sets, the relative entropy is always nonpositive, and reaches its
maximum value of 0 exactly when 𝜇 = 𝜇𝐵 .

It’s common to use Bayesian language to talk about this situation, referring to𝜇𝐵 as a “prior.”
This is fine as long as you allow your class of priors to includemeasures for which 𝜇𝐵 (Ω) = ∞,
so-called improper priors. While such a 𝜇𝐵 can’t really be thought of as a belief about how
likely some subset ofΩ is to arise, youmight think of it as specifying ratios of such likelihoods.
(In particular, then, an improper prior implies a belief about a relative probability if we are
conditioning on a set of finite measure.) For example, using the Lebesgue measure on R as
an improper prior means expressing the belief that, in the absence of other information, the
likelihood for a sample to land in some interval should be proportional to the interval’s length.

Note that if𝜇𝐵 = 𝜇𝑅 , then𝑝𝐵 = 1 and the second integral above will look exactly like the one
we just said was invalid! So it’s fine to write that expression so long as you remember that it is
actually a relative entropy in disguise, and in a setting where the choice of backgroundmeasure
is understood it’s common to be a bit sloppy with language and just call it the “entropy.” We
will, in fact, work in such a setting: whenever we refer to entropies from now on, we are always
actually talking about relative entropies with respect to the Liouville measure.
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3.4 Marginalizing theMicrocanonical Distribution
Themicrocanonical distribution is simple to write down, but it has a couple of disadvantages
that make it difficult to use in actual computations. First, the fact that it’s supported only on the
hypersurface Σ𝐸 turns out to make it hard to work with computationally. Second, perhaps most
importantly, the assumption we started with— that the system never exchanges energy with its
environment— is physically unrealistic. We would therefore like a distribution that is suitable
for describing a non-isolated system at equilibriumwith its environment.

We can learn a lot about what properties we’d like our distribution to have by examining
this second problem inmore detail. We’ll model the physical situation by splitting the phase
space into two pieces, which we’ll call the system and the environment, so that 𝑋 = 𝑋sys × 𝑋env.
We’ll assume that the environment is much larger than the system, and that, while they can
interact, the energy of this interaction is much smaller than the energy of either part separately.
(This is a good assumption for the type of situation we’re usually interested inmodelling, where
the interaction occurs along some interface whose size grows like an area while the size of the
system itself grows like a volume.) This means that we can express the Hamiltonian in the form

𝐻 = 𝐻sys +𝐻env +𝐻int,

where𝐻sys depends only on 𝑋sys,𝐻env depends only on 𝑋env, and𝐻int ≪ 𝐻sys ≪ 𝐻env.
Now, suppose the state of the system and the environment taken together is distributed

according to themicrocanonical distribution, but we are interested in the state of the system
alone. We want tomarginalize themicrocanonical distribution, that is, to take themeasure on
𝑋sys defined by 𝜇(𝐴) = 𝜇𝑚

𝐸
(𝐴 × 𝑋env). Because the interaction term in the energy is so small,

we work in the approximation in which the total energy is simply the sum of the energies of
the system and the environment. Even if we do this, though, themarginal distribution is not
itself a microcanonical distribution, because the state of the system is not restricted to any
constant-energy hypersurface. (In fact, assuming all our Hamiltonians are bounded below by 0,
the energy of the system can be anything between 0 and 𝐸 .)

Fortunately, in reasonable cases there is a family of distributions which (a) is closed under
marginalizations of this type, where the total energy is just the sum of the energies of the
system and the environment, (b) agrees with themicrocanonical distribution in the limit as the
number of particles goes to infinity, and (c) can be described explicitly. We define the canonical
distribution of average energy 𝐸 to be the distribution which, among all distributions in which
the expected value of the energy is 𝐸 , maximizes the entropy

𝑆info [𝑝] := −
∫
𝑋

𝑝 (𝑥) log𝑝 (𝑥)𝑑𝜇𝐿 (𝑥),

where𝑝 (𝑥) is the density with respect to the Liouville measure.
(This condition might or might not pick out a unique probability distribution, or even

pick out any distribution at all; in many cases it does, and we will proceed for now under this
assumption, but the language “the canonical distribution” is reserved for the cases in which it is
true. It will also turn out that, unlike for themicrocanonical distribution, the average energy is
not actually themost natural parameter to use for the canonical distribution. We’ll discuss both
issues moremomentarily.)

The defining condition of the canonical distribution is amaximum entropy condition. Again,
we are actually maximizing relative entropy with respect to the Liouville measure, and this gives
usausefulway to interpret thecondition: if theLiouvillemeasure represents complete ignorance
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about the state, then the canonical distribution is the one which, among the distributions
with average energy 𝐸 , ismaximally uninformative, that is, which assumes as little additional
information as possible.

But whatever interpretation you want to attach to it, themaximum entropy condition can
be used to establish conditions (a) and (b) above.

The proof of the first condition— that canonical distributions are preserved bymarginaliza-
tion— is themore straightforward of the two. We’llmake use of the following fact. Suppose𝜇 is a
probability distribution on𝑋1 ×𝑋2; write𝜇1 for themarginal distribution on𝑋1 and similarly for
𝜇2. Then 𝑆info [𝜇] ≤ 𝑆info [𝜇1] +𝑆info [𝜇2], with equality if and only if𝜇 is the product distribution
of𝜇1 and𝜇2. So, now suppose𝜇 is the canonical distributionwith average energy𝐸 , and assume
as we have been that the energy is additive across 𝑋1 and 𝑋2. Then 𝜇must be the product of 𝜇1
and 𝜇2, since otherwise we could replace it with the product and increase its entropy without
affecting the expected value of the energy. But then 𝜇1 and 𝜇2 must be themaximum-entropy
distributions for their respective average energies since, again, otherwise we could increase the
entropy of 𝜇. We conclude that 𝜇1 and 𝜇2 are also canonical distributions.

The second fact— that the canonical andmicrocanonical distributions coincide in themany-
particle limit — belongs to a collection of theorems called equivalence of ensembles; the word
“ensemble” (which I have deliberately avoided using) is often used in statistical mechanics to
refer to the collection of possible microscopic states fromwhich we are sampling when working
with one or the other of these distributions. I will refer you to Ruelle’s Statistical Mechanics:
Rigorous Results for proofs and just give a heuristic argument here.

Talkingaboutwhathappens “as thenumberofparticles goes to infinity” requires considering
a family of systems with increasing values of𝑁 . For example, for a gas in themicrocanonical
distribution, wemight fix a value 𝜌 for the density and 𝑒 for the average energy per particle and
take the 𝑖 ’th system to be a gas with𝑁𝑖 particles confined to some box of volume𝑁𝑖/𝜌 and total
energy𝑁𝑖𝑒 , and similarly for canonical distribution. We refer to the process of allowing𝑁 to go
to infinity in this way as taking the thermodynamic limit. The goal is then to show that, in the
thermodynamic limit, somemeasure of the difference between the two distributions, like the
relative entropy or the total variation distance, goes to zero.

(Ruelle’s book does not, I think, prove exactly this statement aboutmeasures; the second
paper by Touchette mentioned in the introduction shows how to extract it from the results that
Ruelle does prove.)

Rigorous equivalence-of-ensembles results assume a specific form for theHamiltonian, and
in particular that the interaction between particles is short-range in a certain precise sense. This
has the effect ofmaking the energies of distant pairs of particles close to independent from each
other under the canonical distribution. This enables us tomake a law-of-large-numbers-like
argument that, for a large number of particles, the energy is tightly peaked around its expected
value. (This is also the source of the assumption wemade back in the thermodynamics section
about entropy being additive in composite systems: if the interaction is weak enough, then
knowing the energy of one component tells you very little about the energy of the other, so they
are close enough to independent to be treated as such, and as mentioned above, entropy is
additive in the independent case.)

For any𝑆 ⊆ 𝑋 with 0 < 𝜇𝐿 (𝑆) < ∞, the unique distribution ofmaximal entropy among those
supported on 𝑆 is 1/𝜇𝐿 (𝑆) times the restriction of 𝜇𝐿 to 𝑆 . The microcanonical distribution
arises by first taking such amaximum-entropy distribution supported on {𝑥 ∈ 𝑋 : 𝐸 − Δ𝐸 ≤
𝐻 (𝑥) ≤ 𝐸 + Δ𝐸 } and then taking the Δ𝐸 → 0 limit. We have two conditions wemight place on
a distribution— that the energy be exactly 𝐸 , or that the expected value of the energy be 𝐸 —
but for a large number of particles, the second condition comes close to implying the first, so it

https://arxiv.org/abs/1403.6608
https://arxiv.org/abs/1403.6608
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is at least plausible that the distributions would coincide in the thermodynamic limit.
This, then, is why we use the canonical distribution to describe the state of a non-isolated

system. If we start with amicrocanonical distribution for the combined state of the system and
the environment, then as the size of the environment goes to infinity we are free to replace it
with a canonical distribution. But once we’ve made this replacement, we see that themarginal
distribution for the system alone is another canonical distribution, which is exactly what we
needed.

3.5 A Formula for the Canonical Distribution
Our next task is to find a formula for the canonical distribution. This will be what enables us
to finally connect statistical mechanics to thermodynamics, and in particular to see which
quantities correspond to temperature, entropy, and the rest.

We’re looking for a function𝑝 which, among all functions for which∫
𝑋

𝑝 (𝑥)𝑑𝜇𝐿 (𝑥) = 1 and
∫
𝑋

𝑝 (𝑥)𝐻 (𝑥)𝑑𝜇𝐿 (𝑥) = 𝐸,

maximizes the quantity
−

∫
𝑋

𝑝 (𝑥) log𝑝 (𝑥)𝑑𝜇𝐿 (𝑥).

Wecan solve this using an infinite-dimensional versionof the Lagrangemultiplier formalism.
The formal statement we need is given quite concisely on this Wikipedia page; in our setting, it
amounts to the fact that, given any function𝑝 solving this constrained optimization problem,
there exist constants 𝛽 and𝛾 so that𝑝 also solves the unconstrained optimization problem of
maximizing ∫

𝑋

[−𝑝 (𝑥) log𝑝 (𝑥) −𝛾𝑝 (𝑥) − 𝛽𝑝 (𝑥)𝐻 (𝑥)] 𝑑𝜇𝐿 (𝑥).

We can now employ the standard calculus of variations trick: consider any smooth one-
parameter family of functions 𝑝𝑡 (𝑥) for which 𝑝0 = 𝑝 . If 𝑝 maximizes our functional, it must
also be the case that

0 =
𝜕

𝜕𝑡

����
𝑡=0

∫
𝑋

[−𝑝𝑡 (𝑥) log𝑝𝑡 (𝑥) −𝛾𝑝𝑡 (𝑥) − 𝛽𝑝𝑡 (𝑥)𝐻 (𝑥)] 𝑑𝜇𝐿 (𝑥)

=

∫
𝑋

𝜕𝑝𝑡 (𝑥)
𝜕𝑡

����
𝑡=0

(− log𝑝 (𝑥) − 1 −𝛾 − 𝛽𝐻 (𝑥))𝑑𝜇𝐿 (𝑥).

In order for this to hold for all variations 𝑝𝑡 , it must be the case that the quantity inside
parentheses in the integral vanishes. (This is for the standard variational calculus reason: if
the quantity inside parentheses is nonzero at some 𝑥 , we can choose a variation which is only
nonzero in a tiny neighborhood of 𝑥 and see that the corresponding integral will not vanish.)
We conclude that𝑝 (𝑥) = exp(−1 −𝛾 ) exp(−𝛽𝐻 (𝑥)). It is standard to eliminate𝛾 by writing the
distribution in the form

𝑝𝑐
𝛽 (𝑥) =

1
𝑍 (𝛽) exp(−𝛽𝐻 (𝑥)),

where
𝑍 (𝛽) =

∫
𝑋

exp(−𝛽𝐻 (𝑥))𝑑𝜇𝐿 (𝑥);

https://en.wikipedia.org/wiki/Lagrange_multipliers_on_Banach_spaces
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if we had left in the factors containing𝛾 they would cancel in this expression.
Given any value of 𝛽 , we can use this formula for𝑝𝑐

𝛽
to compute the average energy 𝐸 . But

there is no guarantee that this process is invertible; there are Hamiltonians for which themap
from 𝛽 to 𝐸 is neither injective nor surjective. This notably happens in the presence of phase
transitions, which is a topic I hope to cover in a future article in this series. (This issue comes
up in the “equivalence of ensembles” results we discussed above: part of showing that a given
microcanonical distribution agrees with some canonical distribution in the thermodynamic
limit is showing that we can associate a unique 𝛽 with each 𝐸 in exactly this way.) For now,
though, we will assume that this problem does not occur; this is the case for many of the
simplest systems one might analyze using this machinery, including the ideal gas that we’ll
discuss momentarily.

3.6 Thermodynamics from Statistical Mechanics
Given that we used the same symbol and the same name, it is probably no surprise that the
information-theoretic entropy we have been discussing will end up serving the role of the
entropy from thermodynamics. Conventionally, the two quantities are taken to differ by an
affine transformation

𝑆 = 𝑘𝑆info + constant,
where 𝑘 is Boltzmann’s constant. Since observable quantities in thermodynamics only involve
derivatives of 𝑆 , the additive constant has to be fixed by other considerations, and we’ll take
this up in the next section. For now, since it doesn’t affect anything in this section, we will set this
constant to zero.We’ll also seemomentarily that a version of the second law applies for this 𝑆 ,
but if we take this identification for granted for just a moment, we can see how the quantities
we discussed in the thermodynamics appear.

(You might have seen a different definition of entropy, where we divide the phase space
into regions of “macroscopically indistinguishable” states and define the entropy of a state
to be 𝑆𝐵 = 𝑘 log𝑊 , where𝑊 is the volume of the region the state occupies. This is called
the “Boltzmann entropy” and what we are using is called the “Gibbs entropy”; the Boltzmann
entropy is, up to a constant, the Gibbs entropy of the uniform distribution on the region in
question. The Boltzmann entropy has the advantage of being definable for an individual point
in phase space once the regions have been chosen, but this rarely matters much; the Gibbs
entropy is what is used to domost actual computations, so it’s what we’ll use too.)

The𝑍 appearing in thecanonical distribution is called thepartition function, and it contains
a lot of information about the system. For example, I encourage you to check that

𝐸 =

∫
𝑝 (𝑥)𝐻 (𝑥)𝑑𝜇𝐿 (𝑥) = − 𝑑

𝑑𝛽
(log𝑍 )

and
𝑆 = −𝑘

∫
𝑝 (𝑥) log𝑝 (𝑥)𝑑𝜇𝐿 (𝑥) = 𝑘 (log𝑍 + 𝛽𝐸 ).

These equations imply that

𝑑𝑆

𝑑𝐸
= 𝑘

(
𝑑

𝑑𝐸
(log𝑍 ) + 𝑑𝛽

𝑑𝐸
𝐸 + 𝛽

)
= 𝑘

(
𝑑𝛽

𝑑𝐸
(−𝐸 ) + 𝑑𝛽

𝑑𝐸
𝐸 + 𝛽

)
= 𝑘𝛽,

whichmeans that 𝛽 = 1/(𝑘𝑇 ), and so it is called the inverse temperature. A similar computation
shows that−(log𝑍 )/𝛽 is the Helmholtz free energy. Note that these formulas give us a Legendre
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transform relation that is slightly different that the one we saw when we first discussed the free
energy: 𝑆 is the Legendre transform of log𝑍 with respect to the pair of variables 𝛽, 𝐸 .

We derived the formula for the canonical distribution by imagining that our system is able
to slowly exchange energy with its environment and concluding that we want the distribution
whichmaximizes entropy for a fixed expected value of energy. Wemight want to also treat some
quantity other than energy in this way at the same time.

In general, then, we can build an equilibrium distribution by specifying three types of
thermodynamic variables:

• Variables specified exactly, like the energy in themicrocanonical distribution.

• Variableswith a specified expected value, like the energy in the canonical distribution.

• Parameters that the other variables (especially the Hamiltonian) might depend on. These
might include the volume of the container, or something like the strength of an external
magnetic field.

We then take themaximum-entropy distribution satisfying these constraints. In order for this
to be an equilibrium distribution, the variables in the first two groups should be preserved by
the dynamics. Suppose the variables in the second group are 𝐴1, . . . , 𝐴𝑚 and 𝐴𝑖 is constrained
to have expected value 𝑎𝑖 . Using the Lagrangemultipliers as above, we get:

𝑝 (𝑥) = 1
𝑍
exp

(
−

𝑚∑︁
𝑖=1

𝜆𝑖𝐴𝑖 (𝑥)
)

𝑍 (𝜆1, . . . , 𝜆𝑚) =
∫

exp
(
−

𝑚∑︁
𝑖=1

𝜆𝑖𝐴𝑖 (𝑥)
)
𝑑𝜇𝐿 (𝑥)

𝑎𝑖 = − 𝜕

𝜕𝜆𝑖
(log𝑍 )

𝑆 = 𝑘

(
log𝑍 +

𝑚∑︁
𝑖=1

𝜆𝑖𝐴𝑖

)
; 𝜆𝑖 =

1
𝑘

𝜕𝑆

𝜕𝐴𝑖
.

If energy is among the𝐴𝑖 ’s, say𝐸 = 𝐴𝑚 and 𝛽 = 𝜆𝑚 , then−(log𝑍 )/𝛽 is the analogue of theGibbs
free energy, in which all the variables have undergone a Legendre transform. We say that the 𝐴𝑖

and 𝜆𝑖 variables are conjugate to each other.
The computation that allows you to extract the 𝑎𝑖 ’s from derivatives of log𝑍 generalizes to

an expression for the expected value of any polynomial in the 𝑎𝑖 ’s. In this way, 𝑍 contains a
large amount of information about the statistics of our set of thermodynamic variables, and in
particular all their variances and covariances. I encourage you to check that we have

E[𝐴𝑖1 · · · 𝐴𝑖𝑛 ] =
(−1)𝑛
𝑍

𝜕𝑛𝑍

𝜕𝜆𝑖1 · · · 𝜕𝜆𝑖𝑛

Cov(𝐴𝑖1 , 𝐴𝑖2 ) =
𝜕2

𝜕𝜆𝑖1𝜕𝜆𝑖2
log𝑍 .

(In particular, since covariancematrices are positive definite, thismeans log𝑍 is convex.) This is
one ofmanyways inwhich the statistical-mechanical picture contains strictlymore information
than the thermodynamic one. The values of thermodynamic variables have been identified
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in our new framework with the expected values of random variables, and the new framework
also contains information about variances, covariances, and highermoments of these variables.
This is not just an artifact of the formalism: the variances that arise from this formula consitute
a bona fide quantitative prediction of statistical mechanics that can be (and has been) checked
by experiment.

In addition, suppose that we have some “control parameters” 𝑏1, . . . , 𝑏𝑛 , that is, variables
in the third group above. If we vary both the 𝑎𝑖 ’s and the 𝑏 𝑗 ’s we can write the corresponding
change in 𝑆 as

1
𝑘
𝑑𝑆 =

𝑚∑︁
𝑖=1

𝜆𝑖𝑑𝑎𝑖 +
𝑛∑︁
𝑗=1

𝛾𝑗𝑑𝑏 𝑗 ,

defining𝛾𝑗 = (1/𝑘 ) (𝜕𝑆/𝜕𝑏 𝑗 ) by analogy with the formula for 𝜆𝑖 , and we also refer to the 𝑏 𝑗 and
𝛾𝑗 variables as “conjugate.” Now, let’s imagine energy is one of the 𝐴𝑖 ’s, say 𝐴𝑚 , so that 𝑎𝑚 = 𝐸

and 𝜆𝑚 = 𝛽 . We can then rewrite this formula to lookmore like one we saw earlier:

𝑑𝐸 =
1
𝑘𝛽

𝑑𝑆 −
𝑚−1∑︁
𝑖=1

𝜆𝑖

𝛽
𝑑𝑎𝑖 −

𝑛∑︁
𝑗=1

𝛾𝑗

𝛽
𝑑𝑏 𝑗 .

We are therefore led to identify 𝜆𝑖/𝛽 and𝛾𝑗 /𝛽 with the generalized pressure corresponding to
the 𝐴𝑖 or 𝑏 𝑗 variable.

3.7 The Second Law in Statistical Mechanics
Finally, we should discuss how to extract a version of the second law of thermodynamics. It
is a simple consequence of Liouville’s theorem that running time forward cannot change the
entropy, and this leads to a common stumbling block when learning this machinery: how are
we supposed to get entropy to increase, as it sometimes does in thermodynamics? The story
can’t be as simple as just tracking 𝑆 for a probability distribution over time, but there is still a
story to tell.

Suppose our system starts in an equilibriumdistribution𝜇0. Now, we change the constraints
such that the equilibrium values of our thermodynamic variables are different, meaning that
𝜇0 is no longer an equilibrium distribution. Allow the system to equilibrate by running time
forward until the expected values of our variables have settled down to the new equilibrium
valueswith lowvariances. (Recall that the fact that this happens is oneof our basic assumptions!)
Call the resulting distribution 𝜇′

0. By Liouville’s theorem, 𝑆 [𝜇′
0] = 𝑆 [𝜇0].

Finally, wemay also consider the distribution which, among all distributions with the same
expected values of the variables as 𝜇′

0, has the largest possible entropy. Call this distribution
𝜇1. Since, of course, 𝜇′

0 is one of the distributions satisfying this constraint, we have 𝑆 [𝜇1] ≥
𝑆 [𝜇′

0] = 𝑆 [𝜇0]. Because our system has equilibrated, for the sake of future predictions we are
free to replace 𝜇′

0 with the equilibrium distribution 𝜇1; this is the sense in which entropy is
higher at the endof this process. A useful picture is that𝜇′

0 “knows”not only thenewequilibrium
values of the variables, but also the fact that we started out with different ones. Now that we
have equilibrated, this history is irrelevant and we are free to forget about it.

It is also possible to tell a version of this story for a system in thermal contact with its envi-
ronment wherein you only perform this “forgetting” operation on the environment, rather than
the system, yielding a picture where the total entropy can increase even though the system is
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not at equilibrium. I encourage you to work out that, if you assume that the environment’s tem-
perature never changes, this recovers the picture from the thermodynamics section involving
decreasing free energy.

This is a simple example of a more general procedure called coarse-graining. Basically all
models of non-equilibrium processes in statistical mechanics implement a more sophisticated
versionof this idea, continuouslyprojecting theprobabilitydistribution representing thecurrent
state onto some smaller space of distributions, throwing out fine-grained information about
the state that is (so themodel asserts) irrelevant to predicting its futuremacroscopic behavior.

Nomatter how you do it, getting entropy to increase in our setup requires that you throw
away information about the exact state over time, hopefully because that information was
useless for further predictions about the future. (This should really be seen as a feature, not
a bug: in the information-theoretic context, increasing entropymeans losing information.)
Because themicroscopicphysics is reversible, retaining every single detail about thedistribution
means that in principle the original distribution can be recovered, and so there’s noway entropy
could possibly increase.

From this perspective, the second law is tightly connected to the equilibration hypothesis: it
is the assertion that the systemwill eventually reach a state where the values of the thermody-
namic variables are the only information that is useful for making predictions, and that with
very high probability the resulting values of those variables depend hardly at all on the initial
state.

3.8 The Ideal Gas and the Gibbs Paradox
As an example, we’ll show how to extract the ideal gas law using statistical mechanics. (Recall
that in pure thermodynamics, it just has to be taken as a postulate.) We start by writing down
the Hamiltonian. Whatmakes a gas “ideal” is that the gasmolecules don’t interact with each
other, but if themolecules themselves are big enough theymight have some degrees of freedom
(like rotation, for example) that contribute to the total energy. For simplicity, we’ll restrict our
analysis to amonatomic ideal gas, where this doesn’t happen, meaning that

𝐻 =

3𝑁∑︁
𝑖=1

𝑝2
𝑖

2𝑚 ,

where𝑚 is themass of one gas particle.
All three of thewayswe listed earlier for how a variable can be specified appear in this setting.

The energy 𝐸 has a specified expected value, the number of particles 𝑁 is specified exactly,
and the volume𝑉 of the container will be treated as a control parameter. (We can imagine
the volume appearing in the Hamiltonian as a big spike in the potential energy around the
edges of the container, making any states with particles outside the container contribute an
exponentially small amount to the partition function. We are simplifying the computation by
using the above formula for𝐻 and only integrating over states where all the particles are in the
container.)

We will start by computing the partition function. We have:

𝑍 (𝛽) =
∫
𝑋

exp(−𝛽𝐻 (𝑥))

=

∫
𝑑𝑞1 · · ·𝑑𝑞3𝑁𝑑𝑝1 · · ·𝑑𝑝3𝑁 exp

(
−𝛽

3𝑁∑︁
𝑖=1

𝑝2
𝑖

2𝑚

)
.
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Since the position coordinates don’t appear in the integrand and the gas is confined to a con-
tainer of volume𝑉 , each integral over the three spatial coordinates of a single particle just
contributes a factor of𝑉 . The rest of the integral factors into 3𝑁 independent Gaussian integrals
of the form

∫
exp(−𝛽𝑝2/2𝑚)𝑑𝑝 , and so

𝑍 =𝑉 𝑁

(2𝜋𝑚
𝛽

)3𝑁 /2
=𝑉 𝑁 (2𝜋𝑚𝑘𝑇 )3𝑁 /2.

Our computations from before let us easily compute the energy and entropy:

𝐸 = − 𝑑

𝑑𝛽
(log𝑍 ) = 3𝑁

2𝛽 =
3
2𝑁𝑘𝑇 ;

𝑆 = 𝑘 (log𝑍 + 𝛽𝐸 ) = 𝑁𝑘 log𝑉 + 3𝑁𝑘

2 log(2𝜋𝑚𝑘𝑇 ) + 3𝑁𝑘

2 .

There are many ways to extract pressure from these thermodynamic variables. One is

𝑃 =
1
𝑘𝛽

𝜕𝑆

𝜕𝑉

����
𝐸

= 𝑁𝑘𝑇 /𝑉 ,

and so we see that 𝑃𝑉 = 𝑁𝑘𝑇 as desired.
At the start of the last section wementioned that we have only pinned down the thermody-

namic entropy up to an additive constant. This has no effect on our computation of the ideal
gas law, but it is possible to construct situations which will force us to choose the constant
“correctly.”

First, there is a small conceptual problemwith the way we’ve defined the partition function:
𝑍 is an integral over phase space of a dimensionless quantity, whichmeans that it has units of
phase space volume, and so it doesn’t make sense to take its logarithm. We can solve this by
dividing 𝑍 by some constant with these same units, which will have the effect of subtracting
the logarithm of that constant from 𝑆 . Nothing about our setup so far forces any particular
choice on us, but it’s conventional to divide 𝑍 byℎ3𝑁 (whereℎ = 2𝜋ℏ is Planck’s constant) in
order to make the results agree with the predictions of quantum statistical mechanics in the
high-temperature limit.

Muchmore serious is theproblemof thedependenceon𝑁 . Imagine two identical containers
of the same ideal gas side by side separated by a removable wall. Say each container has 𝑁
particles, volume𝑉 and entropy 𝑆 . Because the two systems are independent from one another,
the total entropymust be 2𝑆 . Now, remove the wall and allow the combined system to come to
equilibrium. By plugging in 2𝑁 and 2𝑉 into the formula for the entropy above, we see that the
entropy is nowmore than 2𝑆 , which is a big problem: if𝑁 is large then with high probability,
half of the particles are on each side of the combined box, so if we reinsert the wall our state
is now the same as the state we started in, whichmeans its entropy would have to drop back
down to 2𝑆 , violating the second law. This is known as theGibbs paradox.

The resolution is quite simple. If we regard the final state as identical to the initial state
(as we should), then that means the gas particles are indistinguishable, that is, interchanging
two of them does not change the state. This, in turn, means that in our formula for 𝑍 we have
overcounted the states by a factor of𝑁 !. I encourage you to show that dividing 𝑍 byℎ3𝑁𝑁 ! and
using Stirling’s formula to approximate log𝑁 ! yields the Sackur-Tetrode formula

𝑆 = 𝑁𝑘

[
log

(
𝑉

𝑁

(2𝜋𝑚𝑘𝑇

ℎ2

) 3
2
)
+ 5
2

]
.
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The situation would be different if the two initial containers held different kinds of gas. In
this situation, some of the gas particles would be distinguishable from one another, and the
final state would actually be different from the initial state, that is, it would be physically correct
for the removal of the wall to increase the entropy. The additional entropy that arises in this way
is called the entropy of mixing.

The computationof the thermodynamicproperties of an ideal gas thatwehave gone through
in this section barely scratches the surface of what the statistical-mechanical machine can do.
One has tomake some assumptions on the way to the expression for the canonical distribution,
most notably that themicrocanonical distribution indeed describes the distribution of states
you will find if you look at random samples of isolated systems at equilibrium. But whatever
you think of these assumptions, the fact is that the resulting theory leads to an astonishingly
large number of very well-confirmed predictions. I hope to covermore of them in future articles
in this series.


	Introduction
	Thermodynamics
	Equilibrium and Thermodynamic States
	Energy and Entropy
	Temperature and Pressure
	Heat and Work
	Free Energy and Enthalpy
	The Carnot Cycle

	Statistical Mechanics
	States as Distributions on Phase Space
	The Microcanonical Distribution
	Entropy and Information Theory
	Marginalizing the Microcanonical Distribution
	A Formula for the Canonical Distribution
	Thermodynamics from Statistical Mechanics
	The Second Law in Statistical Mechanics
	The Ideal Gas and the Gibbs Paradox


