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A ToyModel of Thermodynamic
Behavior

Nic Ford

1 Introduction
One of themost obvious differences between the physics you learn in an introductory class and
the physics of “everyday life” is that many ordinary physical processes are irreversible: cream
mixes into coffee, gas expands to fill a container, hot soup cools down to room temperature,
and none of these things happen backwards. In most of these processes, the system eventually
settles down into an equilibrium state in which nothingmuch seems to be changing, and very
little information about the initial state is recoverable — once the soup has cooled to room
temperature, there isn’t an obvious way to tell what temperature it was when it came out of the
microwave.

The body of physics that describes equilibration processes like these is called thermodynam-
ics. (The name is historical; thermodynamics is applicable to muchmore than just the physics
of temperature.) Perhaps themost confusing aspect of thermodynamics is accounting for the
inherent time asymmetry in the approach to equilibrium. It is supposed to be a large-scale
description of physical processes that are described bymore fundamental laws of physics, like
Newtonian mechanics or quantum mechanics. But these more fundamental laws are com-
pletely reversible— given a solution of the equations of motion, wemay reverse time and all
the velocities and the result is still a solution. How can this possibly give rise to a situation in
which a system approaches equilibrium only in one time direction and not the other?

In this article, we will look at a toy model which is much simpler than any real physical
system, but which approaches equilibrium in a similar way. It ismy hope that, by looking at how
reversibility and equilibration are reconciled for this simple system, where we can compute all
the relevant quantities precisely and easily, you will end up with a clearer picture of how the
same process is supposed to work inmore complicated systems. At the end of the article we’ll
discuss the lessons for real physics that we can take away from this analysis.

This article was written as a companion piece to an article about statistical mechanics and
thermodynamics, but it’s intended to be read totally independently, and the prerequisites are
moremodest. If you know enough probability theory to understand the concepts of expected
value and variance, you’ll probably follow just fine. (We will use ⟨𝑥⟩ to denote the expected
value of the random variable 𝑥 , rather than the also common notationE[𝑥].)

I’m grateful to JordanWatkins and DaveMoore for helpful suggestions on an earlier version
of this article.

http://nicf.net/articles/thermodynamics-statistical-mechanics
http://nicf.net/articles/thermodynamics-statistical-mechanics
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2 Two Objections to Equilibration
In the early days of thermodynamics, the idea that matter is made of atoms at all was controver-
sial, and certainly not everyone expected that we could explain large-scale behavior like the
approach to equilibrium purely in terms of atoms obeying the ordinary laws of physics. One of
the earliest attempts to do this came from Ludwig Boltzmann’s analysis of a gas in a box. He
was able to show that a certain quantity he called𝐻 would always decrease over time, and he
claimed that this was the origin of irreversible behavior;𝐻 takes on its lowest value when the
gas is at equilibrium.

Usually when this story is told there are two objections to Boltzmann’s scheme, attributed
to two of his contemporaries, that are discussed at the same time. Since we now think of
Boltzmann as being fundamentally on the right track, it’s somewhat surprising that both of
these objections are essentially correct ; as we’ll see, they each give us a reason to bemore careful
than we otherwise might have been when describing the approach to equilibrium. Both the
objections themselves and the way we reconcile them with the equilibration story apply in
basically the same way to our toymodel as they do to real physics, so we’ll start by discussing
what they each have to say.

2.1 Loschmidt’s Objection
In Boltzmann’s model, the individual molecules of gas move around the inside of the container
according to the laws ofNewtonianmechanics, and Josef Loschmidt pointed out that this causes
a problem. His complaint was about the same reversibility wementioned in the introduction:
Newtonianmechanics is reversible, and Boltzmann’s𝐻 is unchanged by reversing the velocities
of all the particles, so given any trajectory of the gas molecules in which𝐻 decreases we can
“run time backwards,” producing an equally valid trajectory in which𝐻 increases.

This objection applies quite generally to any attempt to explain the approach to equilibrium
purelyusing reversible lawsofphysics: if theunderlying lawsare time-symmetric,what accounts
for the fact that the system is supposed to approachequilibriumas time increases andget further
from equilibrium as time decreases?

2.2 Zermelo’s Objection
A second objection came from Ernst Zermelo, and it relates to the behavior of the system over
very long times. Zermelo pointed out the Poincaré recurrence theorem, which states that, in a
closedmechanical system like the one Boltzmann is considering, every trajectory will return
arbitrarily close to its initial state infinitely often. Since𝐻 is a continuous function of the state,
this means that𝐻 must also come arbitrarily close to its initial value, so in particular if it ever
decreases it must also eventually increase again.

For a gas with the number of molecules onemight encounter in ordinary life, the resulting
recurrence time is on the order of 101020 seconds, far longer than the age of the universe. (The
probably apocryphal story is that Boltzmann angrily answered Zermelo by saying “You should
wait so long!”) Still, this objection raises a theoretical problemwith any analysis that purports
to find a quantity like𝐻 that only moves in one direction forever.
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3 The Kac RingModel

3.1 The Definition and Typical Behavior
The Kac ring is a dynamical system consisting of 𝑛 sites, arranged in a circle, each containing
either a black or white ball. Some of sites are “marked”; at every time step, the balls all move one
space counter-clockwise, and whenever a ball enters amarked site, it switches its color from
black to white or white to black. The balls move in this way, but the marks always stay in the
same place.

TheKac ringwas introduced in aprinted series of lectures byKac,Uhlenbeck,Hibbs, and van
der Pol called “Probability and Related Topics in Physical Sciences,” in Section III.14. There is
also a discussion in Section 1-9 of Colin Thompson’s book “Mathematical StatisticalMechanics,”
and in the article “Bayes, Boltzmann and Bohm: Probabilities in Physics” by Jean Bricmont. A
lot of this presentation comes from some combination of those sources.

We’re interested in seeing what happens when we pick some initial conditions — that is,
some initial arrangement of black and white balls andmarks for the sites— and watch how the
number of balls of each color changes over time. Specifically, we will keep track of the quantity

𝑒 (𝑡 ) = 1
𝑛
[𝑁𝑏 (𝑡 ) −𝑁𝑤 (𝑡 )],

where𝑁𝑏 (𝑡 ) and𝑁𝑤 (𝑡 ) are the total number of black and white balls after 𝑡 time steps. (The
choice to keep track of this particular number rather than, for example,𝑁𝑏 (𝑡 ) is just for later
mathematical convenience.)

It’spossible toget agoodpictureof the typicalbehaviorby justpicking some initial conditions
at random and looking at a graph of 𝑒 over time. For each run, I randomly chose themarkedness
of each site and the color of each ball independently, so that each site ismarkedwith probability
𝜇 and each ball is black with probability𝑝 . Each run lasted for 2000 time steps.
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Nomatter where 𝑒 starts, it seems to settle down to an “equilibrium value” of around zero
— corresponding to equal numbers of black and white balls —with some fluctuations. These
fluctuations are smaller when 𝑛 is large, and 𝑒 reaches equilibrium faster when 𝜇 is closer to 1

2 .
This is somewhat similar to the situation with the gas in a box: in both cases, whether the

system starts in equilibrium or not, once we start it running it moves toward equilibrium until
the fluctuations drown out any difference between the current state and the equilibrium state,
at which point there seems to be no evidence left of where we started. Our job is to explain this
behavior.

3.2 The Initial Distribution
The first thing to note is that this equilibration doesn’t actually happen for every choice of initial
conditions! It’s not that difficult to arrange the initial conditions so that 𝑒 doesn’t go to 0, or
doesn’t stabilize at all:
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In the first run, we started with every ball black andmarked every 200th site. The second
run was generated by following a process like the one suggested in Loschmidt’s objection: we
marked the sites randomly, startedwith every ball black, ran the system in reverse for 2000 steps,
and took the result as our initial state.

We are forced to concede that we can’t expect this system to always approach equilibrium.
This shouldn’t be too surprising: as the last example shows, Loschmidt’s reversibility objection
applies to our system just as it applies to Boltzmann’s gas in a box.

Still, the examples we looked at earlier strongly suggest that, in some sense, a run with
typical initial conditions will approach equilibrium. In order tomake this case we’re going to
have to decide exactly what “typical” means for us, that is, we’re going to have to choose some
probability distribution for the initial conditions. It’s important to stress that this is a choice
we’re making, and everything about the behavior we’re examining depends on it! We could
certainly choose a distribution that makes initial conditions like the ones we just discussed
highly probable, and it would then not be the case that a typical system approaches equilibrium.

The distribution we will use (which will not have this problem) depends on two parameters:
𝑝 , the probability that a ball starts out as black; and 𝜇, the probability that a site starts out as
marked. The probability distribution is uniquely determined by the choice of𝑝 and 𝜇, together
with the additional requirement that the initial states of all balls and sites are independent. This
is, in fact, the distributionwedrewour first examples from, andwewill see that it exhibits exactly
the behavior we’re looking for. (We will only ever consider 𝜇 ≤ 1

2 , because we can convert the
𝜇 > 1

2 case into this one by switching the color of all balls at every time step.)
It will be helpful to introduce just a bit more notation:

• As before, write𝑁𝑏 (𝑡 ) and𝑁𝑤 (𝑡 ) for the number of black and white balls at time 𝑡 .

• Write 𝜖𝑖 for the variable which is 1 if the 𝑖 ’th site is unmarked and −1 if it is marked.

• Write𝜂𝑖 (𝑡 ) for the variable which is 1 if, at time 𝑡 , the ball at the 𝑖 ’th site is black and −1 if
it’s white.

With this notation, we have

𝑒 (𝑡 ) = 1
𝑛

𝑛∑︁
𝑖=1

𝜂𝑖 (𝑡 ),

and the rule for moving time forward takes a simple form:

𝜂𝑖 (𝑡 ) = 𝜖𝑖𝜂𝑖−1 (𝑡 − 1).

(The expression “𝑖 − 1” should be understoodmodulo 𝑛, so that the indices wrap around from
𝑛 to 1.)

We can use this to write 𝑒 (𝑡 ) just in terms of the initial conditions. We get that

𝑒 (𝑡 ) = 1
𝑛

𝑛∑︁
𝑖=1

𝜖𝑖 𝜖𝑖−1 · · · 𝜖𝑖−𝑡+1𝜂𝑖−𝑡 (0).

From here, it’s not that difficult to get a nice expression for the expected value of 𝑒 (𝑡 ). Because
the 𝜖’s and𝜂 (0)’s are independent, the expected value of any product of them is the product
of the expected values. As long as 𝑡 ≤ 𝑛, the 𝜖’s appearing in the product are all distinct, so we
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have

⟨𝑒 (𝑡 )⟩ =
1
𝑛

𝑛∑︁
𝑖=1

⟨𝜖𝑖 ⟩ · · · ⟨𝜖𝑖−𝑡+1⟩⟨𝜂𝑖−𝑡 (0)⟩

=
1
𝑛

𝑛∑︁
𝑖=1

(1 − 2𝜇)𝑡 (2𝑝 − 1)

= (1 − 2𝜇)𝑡 (2𝑝 − 1).

This is exactly the sort of thing we wanted to see, and it seems to give a decent answer to
Loschmidt’s objection: on average, 𝑒 (𝑡 ) decays exponentially, so while trajectories in which it
moves in the wrong direction aren’t impossible, they are unlikely. We can also see this in action
by looking at the behavior of a large number of random trajectories. In each of the following
graphs I superimposed 100 random trajectories in blue and the value of ⟨𝑒 (𝑡 )⟩we just computed
in red:

Even though we seem to have shown that we get the sort of irreversible behavior we’re after
on average, it can still be a little puzzling to work out “where the time symmetry went.” The
answer is that the trajectory is determined by the rule for the dynamical system and the initial
conditions, and while we never broke the symmetry in the rule, we did break the symmetry
when we chose our initial condition.

Our distribution is stationary if we fix𝑝 = 1
2 , and in this case there is complete symmetry,

since ⟨𝑒 (𝑡 )⟩ starts and remains at 0. Again, trajectories that look like equilibration in reverse are
possible, but very unlikely; it is muchmore probable for 𝑒 (𝑡 ) to just stay around 0 forever. But if
we choose some other value of𝑝 , impose the condition at 𝑡 = 0, and then only look at positive
values of 𝑡 , then we’ve broken the time symmetry. If we considered positive and negative times
equally, we would approach equilibrium not as time goes forward per se, but as we get further
away from the “unusual” (from the perspective of the stationary distribution) value of 𝑒 (0).

Theastute readermayhavenoticed there’s apropertyof this systemthatwe’vebeensweeping
under the rug: what happens when 𝑡 = 𝑛, when each ball has made a full circuit around the
ring? At this point every ball has seen all of themarked sites, so, depending onwhether there’s an
even or odd number of marked sites, we either have 𝑒 (𝑛) = 𝑒 (0) or 𝑒 (𝑛) = −𝑒 (0). If we instead
wait for 2𝑛 time steps, the systemwill return to its original state nomatter what. Either way, this
is not the sort of equilibrium behavior we had inmind! We can see this directly if we look at a
collection of random trajectories all the way out to 𝑡 = 𝑛:
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Our computation of the expected value of 𝑒 (𝑡 ) is correct even for 𝑡 = 𝑛, but focusing just on
⟨𝑒 (𝑛)⟩ is certainlymisleading when the only reason it’s small is that it’s the average of a nearly
equal number of 1’s and −1’s. We can think of this phenomenon as a manifestation of Zermelo’s
objection about recurrence: how can we talk about equilibration when the system returns to its
original state every 2𝑛 time steps?

Well, if “equilibration” is supposed to refer to a process that lasts forever, then we can’t. Still,
there is some sort of approach to equilibrium going on, if only for times 𝑡 much smaller than 𝑛.
We can get a better picture of the typical behavior of the system if wemeasure the variance of
𝑒 (𝑡 ) and not just its expected value. The computation is a bitmore involved, but it uses the same
set of ideas and I won’t go through it here. It’s a nice exercise if you’re so inclined. For simplicity
we’ll just consider the case where𝑝 = 1, in which case the result is (take a deep breath):

Var(𝑒 (𝑡 )) =


0 𝑡 = 0
1
𝑛

(
2 1−(1−2𝜇)2𝑡
1−(1−2𝜇)2 − (2𝑡 − 1) (1 − 2𝜇)2𝑡 − 1

)
0 < 𝑡 ≤ 𝑛

2
1
𝑛

(
2 1−(1−2𝜇)2𝑛−2𝑡+2

1−(1−2𝜇)2 + (2𝑡 − 𝑛 − 1) (1 − 2𝜇)2𝑛−2𝑡 − 1
)
− (1 − 2𝜇)2𝑡 𝑛

2 < 𝑡 ≤ 𝑛

The exact form of the variance is not especially important; there are only two features we need
to notice. First, if 𝑡 = 𝑛, the variance is 1 − (1 − 2𝜇)𝑛 , which is very close to 1, so indeed there
is no reason to expect ⟨𝑒 (𝑛)⟩ to be a good estimate for 𝑒 (𝑛). But, more importantly, if we fix 𝑡
and let 𝑛 go to infinity, then we can see that the variance goes to zero. (Note that the expression
inside the parentheses on the second line does not depend on 𝑛.)

So, if𝑛 is very large andweonly look at times 𝑡 that are small compared to𝑛,most trajectories
should stay very close to an exponential decay toward zero. We can again see this in action in
our examples from above. Here we have drawn a dotted line at one standard deviation above
and below themean:
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This resolution to Zermelo’s objection is very similar to Loschmidt’s. In both cases, the
claimmade in the objection is completely true, but we can still plausibly describe the system as
approaching equilibrium so long as we are careful about what wemean.

4 Lessons for Real Physics
The Kac ring is, of course, much simpler than any actual physical system. This was advantan-
geous in one respect: it made it possible to actually prove everything we claimed about the
approach to equilibrium. Formore realistic models one usually just assumes that the system
approaches equilibrium, or proves it under some simplifying assumptions. Onemight wonder
just what we are supposed to conclude about real physics from this toy model, so it’s worth
going through a few lessons that do in fact carry over.

• Equilibrium depends on the time scale. This shows up very clearly in our example: for
times 𝑡 much less than 𝑛, we can profitably describe the system as approaching equi-
librium, but around 𝑡 = 𝑛 we can’t. For us the thing that happens on that time scale
was a Poincaré recurrence, but in the real world there can be plenty of other reasons to
care about the time scale. Imagine a slightly cold, charged car battery sitting in a room-
temperature garage. It might take just a couple of hours for the battery to warm up to the
temperature of the room, butmonths or longer for it to lose its charge. After it has warmed
up, is it “at equilibrium”? It depends on what processes you’re interested in. Richard
Feynman famously defined equilibrium as when “all the fast things have happened but
the slow things have not,” and this is much closer to the way the term is used in real life
than anythingmore precise might be.
As wementioned before, recurrence times for real systems are truly enormous, far longer
than current estimates of the age of the universe even for a box of gas that fits on a tabletop.
But there are twomore ways in which real physical systems get around the recurrence
problem that didn’t show up for us.
First, in general recurrence times depend on the initial state of the system, whereas our
system always returned to its original state at 𝑡 = 2𝑛. So, in a realistic system, if we follow
a large number of trajectories, then it will not actually be the case that all of them will
return to their original state at once; at any given time at most a small fraction of them
will have done so.
Second, the Poincaré recurrence theorem only applies to closed systems, that is, systems
which are isolated from their environment, and no realistic physical system has this
property! In order to apply Zermelo’s objection in this case you would have to talk about
the state of the system and its environment together, and the recurrence times involved
will be that much larger.

• The prior distribution determines what behavior is “typical.” Statistical mechanics
is the body of physics that seeks to describe thermodynamic behavior in terms of the
statistical behavior of a system’s microscopic components. Everything about our analysis
depended on the probability distribution we drew the initial conditions from, and as we
discussed it is easy to imagine other distributions for which the approach to equilibrium
is not the “typical” behavior. This is equally true for real-world statistical mechanics.
Usually everyone agrees on which probability distributions to use, and their predictions
match the results of experiments quite well, but this does not change the fact that all
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their computations depend on a choice of distribution. You can’t take the statistics out of
statistical mechanics!

• Equilibrium depends on the choice of variables. Even if we restrict attention to the time
scale on which the “approach to equilibrium” story makes sense, it was important to our
analysis that the variable we were interested in was 𝑒 (𝑡 ); if, for example, we had just kept
track of the color of the balls at the first and third sites, we wouldn’t have seen anything
like equilibration.
This feature of our model is meant to be a reflection of the fact that, for real systems,
most of the details of the state are inaccessible and we can only measure a comparatively
small number of “macroscopic variables”; this choice is usually constrained by what is
easy tomeasure, but it is still choice. When we say that a real-world system has reached
equilibrium, wemean that thesemacroscopic variables that we have chosen to keep track
of seem to have stopped changing.

• Equilibration involves losing information. Another important aspect of the approach
to equilibrium, closely connected to the irreversibility, is the loss of information. If we
only track 𝑒 (𝑡 ), then once the number of black and white balls is approximately equal,
any information about the initial value of 𝑒 (𝑡 ) is swamped by the “random” fluctuations,
and so is essentially lost.
Of course, the entire initial state is encoded, in a very opaqueway, in the exact state at time
𝑡 ; if we knew this exact state we could run time backwards and recover the initial value
of 𝑒 (𝑡 ). Describing the state just in terms of 𝑒 (𝑡 ), then, throws out information, and not
just information about the exact state but also information about previous values of 𝑒 (𝑡 )
itself. If you study statistical mechanics inmore detail, you will learn that this is one way
to think about the increase in entropy described by the second law of thermodynamics.
Throwing out information in this way is only a good idea if it doesn’tmuch affect the future
behavior of the system, and for our system this is again a question of time scales. Suppose
we start the systemwith all white balls and after running until 𝑡 = 3

4𝑛 the system is close
to equilibrium. Are we free to forget everything except the value of 𝑒 (𝑡 )? If we only run
for a little while longer then this is fine, but if we run for 1

4𝑛 more time steps we’re in for a
surprise!
When analyzing real systems it’s often useful to “throw out” information in exactly this
way, by only keeping track of the values of a small number of easily measurable variables,
but information is also lost in another way that didn’t show up for us here. A real physical
system is always interacting with its environment, and so, if we are only able to make
detailedmeasurements of the system and not of the universe around it, we will also lose
information over time just because of our ignorance of the details of this interaction.
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