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What is it?

Differential geometry is about using tools from multivariable
calculus and linear algebra to study the geometry of curved shapes
and spaces.

The foundations of the field have changed a lot since its
beginnings in the 19th century, but modern mathematicians have
built out a beautiful set of tools for doing calculus in
non-Euclidean geometries.

We’ll be discussing how these work and give some examples of how
to use them to do geometry.
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Why should you care?

Maybe you shouldn’t! But it can help you think about situations
where...

...there’s no natural distance metric or the natural one isn’t
Euclidean.

A spherical triangle with three right
angles. How do you compute its area?

Applying 1
2bh gives

1
2(π2 )(π2 ) = π2

8 ≈ 1.23.

But the area is actually
1
8(4π) = π

2 ≈ 1.57.
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Why should you care?

Maybe you shouldn’t! But it can help you think about situations
where...

...topology prevents you from using the same coordinates for the
whole space.



Why should you care?

All of these can be addressed together by reformulating calculus
and geometry in terms of smooth manifolds. Ordinary calculus on
Rn will be a special case.

Even if you only care about Rn, many aspects of calculus and
geometry appear more natural with the general perspective in
mind.
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What is a smooth manifold?

A smooth manifold will be our arena for doing calculus and
geometry.

We’ll say it consists of a set of points,
together with some charts covering all
the points. A “chart” is a one-to-one
correspondence between some subset of
the points and an open ball in some Rn.

We require the coordinate-change functions from one chart to
another to be smooth (i.e. infinitely differentiable).
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Some examples

These two charts can give a circle the
structure of a smooth manifold.

Writing C for the circle, we can define the
charts as:

r :

(
−π

4
,

5π

4

)
→ C b :

(
3π

4
,

9π

4

)
→ C

r(t) = (cos t, sin t) b(u) = (cos u, sin u)

The red-to-blue coordinate change function b−1 ◦ r is defined on
(−π

4 ,
π
4 ) ∪ (3π4 ,

5π
4 ). It is the identity on the right half and

t 7→ t + 2π on the left half.
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Some examples

Six charts on a sphere.

Writing S for the sphere and B for the
open unit ball in R2, two of these charts
might be:

r : B → S b : B → S

r(u, v) = (u, v ,
√

1− u2 − v2) b(s, t) = (
√

1− s2 − t2, s, t)

The red-to-blue coordinate change function is

(u, v) 7→ (v ,
√

1− u2 − v2).
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Some examples

Four charts on a torus.



What is a smooth manifold?

This definition allows you to say which functions on a manifold are
smooth, and which maps between manifolds are smooth. (More on
this next time!)

The charts give many local coordinate systems that overlap with
each other, but no particular one is special.
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Building smooth manifolds

Two ways to build a smooth manifold:

I Define the charts explicitly and give rules for how to glue
them together.

I Define the manifold as the solution to some equations:
I First consider the equations

xm+1 = 0, xm+2 = 0, . . . , xn = 0

on Rn. The other m coordinates give the solution the structure
of a manifold. (E.g., z = 0 defines a plane in R3, and we can
use x and y to give in coordinates.)

I The implicit function theorem says that, for any system of
equations whose Jacobian matrix has full rank at p, we can
find coordinates around p where the equations look like this.
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Some examples

There are all smooth manifolds defined by one equation each:

x2 + y2 − 1 = 0 x2 +y2 + z2−1 = 0
100((x(x − 1)2(x − 2) +
y2)2 + z2)− 1 = 0



Some examples

These equations fail to define smooth manifolds because they
violate the condition in the implicit function theorem at one point:

y2 − x2 − x3 = 0 x2 − y2 + z2 = 0



Some examples

The set of all 3D rotations and reflections forms a
three-dimensional manifold called O(3).

Each rotation or reflection in O(3) corresponds to a 3× 3 matrix A
for which AAT = 1.

These conditions can be written as equations in the entries of the
matrix, so O(3) can be cut out by six equations in R9.



Building smooth manifolds

The method of defining manifolds as solutions to equations makes
it even harder to think in terms of any particular coordinate
systems!



Questions?



Smooth functions and smooth maps

We’re about to talk about derivatives, so we need to be a bit more
precise about the functions we’ll be differentiating.

We’ll be concerned with real-valued functions on manifolds as well
as maps from one manifold to another.

We’ll start by asking what it means for one of these to be smooth,
and then we’ll discuss how to differentiate them.
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Smooth real-valued functions on manifolds
We say a real-valued function φ : M → R is smooth if, when you
restrict it to each chart on M, it’s a smooth function on the
corresponding open ball in Rn.

Example: the function on the sphere
that takes each point to its z coordinate
(as point in R3 with the usual
embedding of the sphere).

On this chart, this function is
(u, v) 7→

√
1− u2 − v2. On other

charts, the formula is different.

Because we demanded that our coordinate-change functions have
to be smooth, φ is smooth near some point p if and only if it’s
smooth on any chart containing p.



Smooth real-valued functions on manifolds
We say a real-valued function φ : M → R is smooth if, when you
restrict it to each chart on M, it’s a smooth function on the
corresponding open ball in Rn.

Example: the function on the sphere
that takes each point to its z coordinate
(as point in R3 with the usual
embedding of the sphere).

On this chart, this function is
(u, v) 7→

√
1− u2 − v2. On other

charts, the formula is different.

Because we demanded that our coordinate-change functions have
to be smooth, φ is smooth near some point p if and only if it’s
smooth on any chart containing p.



Smooth real-valued functions on manifolds
We say a real-valued function φ : M → R is smooth if, when you
restrict it to each chart on M, it’s a smooth function on the
corresponding open ball in Rn.

Example: the function on the sphere
that takes each point to its z coordinate
(as point in R3 with the usual
embedding of the sphere).

On this chart, this function is
(u, v) 7→

√
1− u2 − v2. On other

charts, the formula is different.

Because we demanded that our coordinate-change functions have
to be smooth, φ is smooth near some point p if and only if it’s
smooth on any chart containing p.



Smooth maps between manifolds

For a map f : M → N from one manifold to another, we again
define smoothness in terms of charts:

Our map is smooth if, for each p ∈ M, there’s an M chart around
p and an N chart around f (p) on which the corresponding map
between open balls in Rn is smooth (wherever it’s defined).
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Smooth maps between manifolds

Again, if we get this on any collection of charts that cover the
image of M, it follows for every chart we could check.



When are two manifolds “the same”?



Diffeomorphisms

Two manifolds are often thought
of as “the same” if they are
diffeomorphic: there’s a
one-to-one correspondence
between two the points that’s a
smooth map in both directions.



Derivatives on manifolds

Derivatives are linear maps that describe how f (x) changes in
response to small changes in x .

How do we represent them on a
manifold where we may not have coordinates?

The input to a derivative should be a
direction, but there’s no reason for
directions at one point on a manifold to
have anything to do with directions at
another point!

So we should attach a different vector space to each point of the
manifold, called the tangent space.
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Defining tangent spaces

Here are three approaches:

If the manifold is embedded in some Rn,
we can use the literal tangent space (or
line, or plane). This picture is just a little
misleading: tangent vectors should be
thought of as extremely close to the point,
not extending far away from it.



Defining tangent spaces

Here are three approaches:

We can think of tangent vectors as being
represented by tiny curves through the
point — that is, smooth maps
γ : (−1, 1)→ M with γ(0) = p. We
declare that two curves represent the same
tangent vector as each other if they have
the same velocity. It’s harder to see how to
add these, but it can be done.
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We can simply define the tangent vector in terms of the derivative
operator.
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We can simply define the tangent vector in terms of the derivative
operator. A tangent vector v at p is a rule for consuming functions
and producing numbers which satisfies:

I v(φ+ ψ) = v(φ) + v(ψ)

I v(αφ) = αv(φ) for a real scalar α

I v(φψ) = φ(p) · v(ψ) + ψ(p) · v(φ).
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Tangent vectors and coordinates

We’ll write TxM for the tangent space to M at the point x (i.e.,
the vector space containing all the tangent vectors).

Picking a coordinate system on a chart
gives rise to a collection of tangent
vectors at every point in the chart called
coordinate tangent vectors. At each
point x , the coordinate tangent vectors
for a basis for TxM.
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Tangent vectors and coordinates

NB: Coordinate tangent vectors are a chart-dependent notion!
Switching coordinates changes which vectors are coordinate
vectors.

Write û, v̂ for the coordinate tangent
vectors on the red chart and ŝ, t̂ for
the blue chart.

Our change of coordinates from red
to blue was
(u, v) 7→ (v ,

√
1− u2 − v2).

The relationship between the coordinate vectors works out to:
û = (−

√
1− s2 − t2/t)t̂; v̂ = ŝ − (s/t)t̂.



Tangent vectors and coordinates

NB: Coordinate tangent vectors are a chart-dependent notion!
Switching coordinates changes which vectors are coordinate
vectors.
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The relationship between the coordinate vectors works out to:
û = (−

√
1− s2 − t2/t)t̂; v̂ = ŝ − (s/t)t̂.
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Derivatives are linear maps between tangent spaces

Any smooth map f : M → N gives us a linear map
dfp : TpM → Tf (p)N on all of the tangent spaces called the
pushforward or total derivative. (You might see the notation f∗
too.) Think of it as “what f looks like if you zoom in very close to
x .”
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Derivatives are linear maps between tangent spaces

How to formally define dfp depends on how you defined the
tangent space:

I If v ∈ TpM corresponds to the curve γ : (−1, 1)→ M with
γ(0) = p, then dfp(v) corresponds to the curve t 7→ f (γ(t)).

I Thinking of v as a derivative operator, dfp(v) takes the
function φ : N → R to v(f ◦ φ).

When you pick charts around p and f (p), the total derivative
becomes the ordinary Jacobian matrix.

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn
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The tangent space as the “zoomed-in” manifold

In many cases, the tangent space to a manifold contains the
relevant information about the behavior of manifold around the
corresponding point.

Example: if the intersection of two submanifolds is transverse —
meaning their tangent spaces always intersect in the lowest
dimension possible — the result is another manifold.
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Extra miscellaneous tangent space facts

Consider a manifold M embedded in Rn via a map i : M → Rn.
The tangent plane (in the ordinary sense) at a point p is the image
of dip.

From this perspective, the chain rule is just the fact that total
derivatives respect composition of functions, that is,
d(g ◦ f )x = dgf (x) ◦ dfx .



Extra miscellaneous tangent space facts

Consider a manifold M embedded in Rn via a map i : M → Rn.
The tangent plane (in the ordinary sense) at a point p is the image
of dip.

From this perspective, the chain rule is just the fact that total
derivatives respect composition of functions, that is,
d(g ◦ f )x = dgf (x) ◦ dfx .



Questions?



Lengths and angles on manifolds

To do geometry, we want to talk about lengths, angles, areas,
volumes, and so on.

Just picking coordinates is no good:
nothing requires our coordinate charts
to preserve lengths! Most of the time
they don’t and shouldn’t be expected
to.

We need to put an extra piece of
structure on our manifold to do this.
The thing we’ll use is called a
Riemannian metric.
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Lengths and angles on manifolds

A Riemannian metric consists of an inner product on every tangent
space.

This is a way of assigning, to each pair of tangent vectors v ,w in
the same tangent space, a real number 〈v ,w〉 so that:

I (symmetric) 〈v ,w〉 = 〈w , v〉.
I (bilinear) 〈αv + βv ′,w〉 = α〈v ,w〉+ β〈v ′,w〉 and also on the

other side.

I (positive definite) 〈v , v〉 ≥ 0, with equality only if v = 0.
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Lengths and angles on manifolds

An inner product can be thought of as telling you about lengths
and angles exactly like the ordinary dot product on Rn:

〈v ,w〉 = |v | · |w | · cos θ

where θ is the angle between v and w . (In particular,
〈v , v〉 = |v |2.)

NB: The inner product is how we define lengths and angles! The
right-hand sides of these two expressions should be taken as a way
of interpreting a choice of inner product as an assignment of
lengths and angles to vectors. But the symbols “| |” and “θ” have
no meaning in isolation!
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Lengths and angles on manifolds

Once we’ve picked a metric, we can, for
example, compute lengths of curves. Given a
smooth map γ : [0, 1]→ M, write γ′(t) for the
pushforward of the unit tangent vector at t.
Then the length of γ is∫ 1

0

√
〈γ′(t), γ′(t)〉dt.



Metrics in coordinates
Picking a coordinate chart gives us a basis of
coordinate tangent vectors everywhere on the
chart. If the coordinates are x1, . . . , xn, write
ê1, . . . , ên for the coordinate tangent vectors.
Once we’ve done this, we can write our metric
as a matrix:

g =


〈ê1, ê1〉 〈ê1, ê2〉 · · · 〈ê1, ên〉
〈ê2, ê1〉 〈ê2, ê2〉 · · · 〈ê2, ên〉

...
...

. . .
...

〈ên, ê1〉 〈ên, ê2〉 · · · 〈ên, ên〉

 .

As usual in linear algebra, we can then write
〈v ,w〉 = vTgw , provided we expand v and w
in the êi basis.

Note that the entries of the matrix will in
general be functions of x1, . . . , xn.



Metrics in coordinates
Picking a coordinate chart gives us a basis of
coordinate tangent vectors everywhere on the
chart. If the coordinates are x1, . . . , xn, write
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in the êi basis.

Note that the entries of the matrix will in
general be functions of x1, . . . , xn.



Metrics in coordinates
Picking a coordinate chart gives us a basis of
coordinate tangent vectors everywhere on the
chart. If the coordinates are x1, . . . , xn, write
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Example: the hyperbolic plane
The hyperbolic plane can be thought of as the upper-half plane
with the inner product given by(

1/y2 0
0 1/y2

)
in the standard basis of coordinate tangent vectors. (What does
this mean about the lengths of the tangent vectors?)

(Credit: Wikipedia.)



Example: the hyperbolic plane

Let’s compute the lengths of these two curves:

The red curve stays at
y = 1/2, so its length is

∫ √
3
2

−
√
3
2

2 dt = 2
√

3 ≈ 3.464.

The blue curve can be given by
t 7→ (cos t, sin t) for π/6 ≤ t ≤ 5π/6.
The length of the tangent vector at
time t is 1/ sin t, so the total length is∫ 5π

6

π
6

1

sin t
dt = log

(
2 +
√

3

2−
√

3

)
≈ 2.634.



Example: the hyperbolic plane

Let’s compute the lengths of these two curves:

The red curve stays at
y = 1/2, so its length is

∫ √
3
2

−
√
3
2

2 dt = 2
√

3 ≈ 3.464.

The blue curve can be given by
t 7→ (cos t, sin t) for π/6 ≤ t ≤ 5π/6.
The length of the tangent vector at
time t is 1/ sin t, so the total length is∫ 5π

6

π
6

1

sin t
dt = log

(
2 +
√

3

2−
√

3

)
≈ 2.634.



Example: the hyperbolic plane

Let’s compute the lengths of these two curves:

The red curve stays at
y = 1/2, so its length is

∫ √
3
2

−
√
3
2

2 dt = 2
√

3 ≈ 3.464.

The blue curve can be given by
t 7→ (cos t, sin t) for π/6 ≤ t ≤ 5π/6.
The length of the tangent vector at
time t is

1/ sin t, so the total length is∫ 5π
6

π
6

1

sin t
dt = log

(
2 +
√

3

2−
√

3

)
≈ 2.634.



Example: the hyperbolic plane

Let’s compute the lengths of these two curves:

The red curve stays at
y = 1/2, so its length is

∫ √
3
2

−
√
3
2

2 dt = 2
√

3 ≈ 3.464.

The blue curve can be given by
t 7→ (cos t, sin t) for π/6 ≤ t ≤ 5π/6.
The length of the tangent vector at
time t is 1/ sin t, so the total length is∫ 5π

6

π
6

1

sin t
dt = log

(
2 +
√

3

2−
√

3

)
≈ 2.634.



Isometries

The presence of a metric introduces a new way for manifolds to be
equivalent that’s stronger than diffeomorphism: a diffeomorphism
f : M → N is an isometry if it preserves the metric, that is, we
always have 〈v ,w〉TpM = 〈dfp(v), dfp(w)〉Tf (p)N .



Isometries

Each group consists of manifolds that are diffeomorphic to each
other but not isometric.



Common pitfalls

There are many possible metrics one can put on the same manifold,
and each can potentially give different lengths for the same curve.

In particular, a great way to put a metric on a manifold is to
embed it somewhere (like Rn) where you already have a metric
picked out. But the resulting metric depends on the embedding!

If you have a coordinate system, you can use it to identify all the
tangent spaces with Rn, which gives you an obvious choice of
metric. But most metrics don’t arise in this way for any choice of
coordinates! The ones that do are called flat. (The usual metric on
the sphere, for example, isn’t flat.)
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The metric determines the geometry

Lengths and angles are enough to compute areas, volumes, etc.:

Area2 = 〈v , v〉〈w ,w〉 − 〈v ,w〉2.
Integrate (the square root of) this to
get the area of a surface.

In fact, knowing just the lengths is enough to determine the
angles, provided that the lengths come from an inner product:

〈v + w , v + w〉 − 〈v − w , v − w〉 = 4〈v ,w〉.



The metric determines the geometry

Lengths and angles are enough to compute areas, volumes, etc.:

Area2 = 〈v , v〉〈w ,w〉 − 〈v ,w〉2.
Integrate (the square root of) this to
get the area of a surface.

In fact, knowing just the lengths is enough to determine the
angles, provided that the lengths come from an inner product:

〈v + w , v + w〉 − 〈v − w , v − w〉 = 4〈v ,w〉.



The metric determines the geometry

Lengths and angles are enough to compute areas, volumes, etc.:

Area2 = 〈v , v〉〈w ,w〉 − 〈v ,w〉2.
Integrate (the square root of) this to
get the area of a surface.

In fact, knowing just the lengths is enough to determine the
angles, provided that the lengths come from an inner product:

〈v + w , v + w〉 − 〈v − w , v − w〉 = 4〈v ,w〉.



The metric determines the geometry

Metrics are also necessary for defining the gradient of a smooth
function on a manifold:

the thing that makes ∇f special is that,
for any tangent vector v , ∂v f = 〈∇f , v〉.
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Questions?



Book recommendations
Some suggestions for things to read to learn more:

I The Shape of Space by Jeffrey Weeks. Lots of pictures and
intuition, low on formalism (even less than here), fun.

I Calculus on Manifolds by Michael Spivak. A careful
introduction to the non-geometry parts aimed at undergrad
math majors, including integration and Stokes’s Theorem.

I A Comprehensive Introduction to Differential Geometry
by Michael Spivak. Five volumes; lives up to its name. A nice
sequel for those who want much more detail and more
geometry.

I Topology from the Differentiable Viewpoint by John
Milnor. Short, well-written, also aimed at math majors, also
no geometry, but some very nice topological content.

I General Relativity by Robert Wald and Gravitation by
Misner, Thorne, and Wheeler. Cover much of the same
material motivated by physics (and then also cover the
physics).
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