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1 Symmetries and the Definition of a Group

1.1 Symmetries

The point of these notes is to introduce you to the definition of a group and to help you under-
stand how groups work and why one would want to study them. The primary goal here is the
development of intuition rather than the introduction of formalism. Therefore, we spend a lot
of time, especially in the beginning, with examples. There are exercises at the end of most of the
sections, and if you’re reading these notes outside the context of a course, it is a good idea to
attempt all or most of them.

It will be instructive to begin with a short discussion of symmetry: historically, this is one of the
first situations in which the theory of groups was developed, and it’s also probably the easiest to
understand. When I was in third grade or so, one of the things they made us do in math class was
to take pictures of some capital letters and draw “lines of symmetry” on them. The lines we were
drawing, they told us, were the ones with the property that the letter “looks the same” on either
side of the line. For example, the letter A gets just one line, going vertically through the middle,
whereas the letter H gets two, one vertically down the middle, and another one horizontally across
the middle. The lines are like mirrors: the part of the letter on one side is the reflection of the part
on the other side.

This made for a fun exercise for third-graders, but unfortunately it fails to capture the essence
of what we mean when we say that an object is symmetrical. To see why, consider the letters N
and R. If you try to draw lines of symmetry for either one, you’ll find that you can’t. There’s no way
to place a “mirror” in the middle of either of these letters. (If you don’t believe me, try for yourself.)
But when one looks at the shapes of both letters, one can’t help but feel that N is somehow “more
symmetrical” than R.

This feeling, it turns out, is entirely justified. The letter N is symmetrical, just in a different
way: if you rotate it 180 degrees, it looks the same, whereas this is definitely not true of R. This
suggests a new definition, which is the one we’ll use: a symmetry of some object is some way of
moving the object around1 which leaves it looking the same as it started.

This new definition of symmetry includes our old one, and we find that even some shapes
which have “mirror” symmetries also have rotational symmetries, like the letter N. For example,
consider the letter H (Figure 1).

You can flip it vertically or horizontally2, or rotate it by 180 degrees. In addition to these three
symmetries, there is a fourth, of a type we haven’t considered yet: you can simply do nothing.
This transformation, called the identity, is always a symmetry of any shape you might happen to
be looking at. (While this may seem like a strange point to be emphasizing, the fact that doing
nothing counts as a symmetry will be important later.) So the letter H has four symmetries. The
letter A, by contrast, only has two, as you can see in Figure 2.

It can either be flipped horizontally or left alone.

1When we talk about “moving an object around,” we need to be a bit more precise: we restrict our attention to rigid
transformations which keep distances the same, like rotations and reflections. These are called isometries.

2There is some ambiguity in the phrase “flip vertically”: does it mean a reflection around a vertical line, or a reflection
which moves points vertically? In these notes, we’ll always mean the latter, as in the leftmost H in Figure 1.
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Figure 1: The symmetries of the letter H. In order: a vertical flip, v ; a horizontal flip, h; a 180-degree rotation,
r 180; and the identity, i .

Figure 2: The symmetries of the letter A: the identity, i , and a horizontal flip, h.

We can use this to compare the shapes of the letters we’ve been looking at. We already observed
that some letters have non-identity symmetries (like N) and others don’t (like R), but we can also
make finer distinctions than that. For example, the symmetries of the letters M, T, and Y are like
those of the letter A; the number 8 is like H; the letters S and Z are like N. Indeed, N and A have
something in common as well: they both have exactly two symmetries, whereas H has four and R
has one.

Figure 3: These two shapes each have four symmetries, but they have different symmetry groups.

But we can do more with symmetries than just count them. Consider the two shapes in Figure
3. It is not difficult to see that the one on the left has exactly the same four symmetries as the letter
H. (In fact, it’s just an H with three more lines drawn on it, and all the extra lines look the same
after performing any of the symmetries of H.) The one on the right also has four symmetries: it
can be rotated by 90, 180, or 270 degrees, or it can be left alone. None of its symmetries can be
reflections, since a reflection would switch which side of each small arc has the dot on it.

But there is an important difference between the symmetries of these two shapes, which comes
out when we look at how the symmetries interact with each other. Imagine performing one of the
symmetries of H twice. Whether you reflect twice or rotate twice by 180 degrees, the end result
is that everything is back where it started. That is, doing any of the symmetries of the shape on
the left twice is the same as just doing the identity. But this isn’t true of the shape on the right: for
example, rotating twice by 90 degrees doesn’t give you the identity, it gives you a rotation by 180
degrees. So even though both shapes have the same number of symmetries, we see that there is a
crucial difference between them. For the shape on the left, doing any symmetry twice gives you
the identity, but this isn’t true of the shape on the right.
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1.2 Generalizing Symmetry

The collection of symmetries of some shape, like the four symmetries of H and the two symmetries
of A depicted above, are an example of a group, a type of mathematical object which we’ll define
shortly. When we study groups of symmetries, we will be interested only in how the symmetries
interact with each other, rather than in how they interact with whatever object we were looking at.
For example, if you rotate by 180 degrees twice, or if you flip horizontally twice, the result is the
same as if you had done nothing at all. In this sense, the groups of symmetries of A and N look the
same: they both have two symmetries, one of which is the identity, and the other of which gives
you the identity if you do it twice. The fact that the non-identity element of A’s group is a reflection
and not a rotation is not the sort of thing we’ll be examining; the fact that all the symmetries in
both groups interact with each other in the same way is the sort of thing we’ll be examining.

So a group of symmetries can be completely described by listing all the symmetries and what
happens when you perform one followed by another. The process of performing one symmetry
followed by another is called composing the symmetries. For example, when you compose a
horizontal flip with a vertical flip, you get a 180-degree rotation.

We might express all this information in a table. The table on the left describes the symmetries
of the first shape in the picture above, and the table on the right describes the symmetries of the
second shape. Here i is the identity, h is a horizontal flip, v is a vertical flip, and r n is a rotation by
n degrees. To get the entry in each spot in the table, compose the entry on the left side with the
entry on the top.

i h v r 180

i i h v r 180

h h i r 180 v
v v r 180 i h

r 180 r 180 v h i

i r 90 r 180 r 270

i i r 90 r 180 r 270

r 90 r 90 r 180 r 270 i
r 180 r 180 r 270 i r 90

r 270 r 270 i r 90 r 180

It will be helpful later to have a notation for the composition of two symmetries, so we’ll
introduce one now: if a and b are two symmetries, then their composition will be written b ◦a .
That is, if you perform a and then perform b , the result is the same as performing b ◦ a . (This
notation seems backwards, but there is a good reason for it, which is related to the corresponding
backwardness for function applications: f (g (x ))means take x , do g , then do f . In Section 3, we
will be happy to have made this convention.) Each table above can be thought of as a sort of
“multiplication table” for the corresponding group of symmetries. For example, the table on the
left tells us that h ◦ r 180 = v .

The tables, which we’ll call composition tables, also tell us that composing with the identity
always leaves you with the same symmetry you started with. (For example, i ◦ r 270 = r 270 and
h ◦ i = h.) This, of course, is because the identity is the transformation that does nothing. The
composition tables should also make it clear why we wanted to consider the identity as a symmetry
in the first place. If we didn’t, we would have spots in the table that we couldn’t fill in, like h ◦h.

Here are the composition tables for the symmetries of A and the symmetries of N respectively:

i h
i i h
h h i

i r 180

i i r 180

r 180 r 180 i

Notice that the only difference between these two composition tables is the labeling: all we
need to do to turn one table into the other is switch the names of “h” and “r 180.” But such a
relabeling isn’t possible for the first pair of tables. No matter what names you give to each of
the symmetries, there’s no way to stop each symmetry of the left shape from giving you the
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identity when you compose it with itself. This property has a name: we say that the symmetry
group of A is isomorphic to the symmetry group of N, whereas the symmetry groups of the two
shapes represented by the first pair of tables are not. (We will give a more precise definition of
isomorphism in a later section.) In group theory, we will be studying the structure of objects like
these groups of symmetries, so two isomorphic groups will be regarded as being essentially the
same object.

Once you have the composition table in front of you, there isn’t actually any need to refer to the
geometric object that the table came from except for intuition. For the types of questions we are
interested in — how these transformations interact with each other — it’s enough just to have the
table. The geometric information is redundant, and in fact, it can make two groups look different
(like the symmetries of A and N) when, for our purposes, we ought to treat them the same.

When modern mathematicians confront a situation like this, their solution is usually to abstract
away from the things that are providing the redundant information, that is, to come up with a way
of describing the objects they’re looking at that doesn’t require them to start from, say, a drawing
of a shape if they’re just going to forget about it later. In this case, the thing that will come out of
this abstraction process will be the definition of a group. So what we need to do is find a way of
describing what it is that groups of symmetries all have in common other than the fact that they
happen to have come from transformations of shapes.

We have already mentioned two of those things. The first is that symmetries can be composed.
That is, given two symmetries, a and b , you can produce a new symmetry b ◦ a . Since we are
attempting to describe symmetry groups without referring to the shapes they came from, every
property we discuss will have to be phrased as a property of this composing process rather than as
a property of shapes.

The second fact that we’ve already observed is that, no matter which symmetry group you’re
looking at, there is a special symmetry that is always there: the identity. When you compose with
the identity, you always get the element you started with, as mentioned above, and this property
of the identity is the sort of thing that can go into our abstract definition of a group. Notice that we
can no longer describe the identity as “the symmetry that does nothing to the shape,” because
that requires us to refer to the shape. The thing that makes the identity special is its relationship
to composition.

The last two properties are things we haven’t mentioned yet, but are still true of any conceivable
symmetry group. The first of these is that any symmetry is reversible. That is, given any symmetry
a , there’s another symmetry b , called the inverse of a , which does a “backwards.” In terms of
composition, this means that b ◦a = i : if you do a and then b , you’re back where you started. For
example, in the symmetry groups discussed above, h and v are their own inverses, and r 270 is the
inverse of r 90, as you can see in Figure 4.

Figure 4: The operations of rotating by 90 degrees and rotating by 270 degrees are inverses.

The last property, called associativity, has to do with sequences of three symmetries. In terms
of compositions, it says that c ◦ (b ◦a ) = (c ◦b )◦a . In other words, whether you first do a and then
do b ◦c , or you first do a ◦b and then do c , you get the same answer: either way, it has the effect of
doing a , then b , then c .

With this, we’ve finally arrived at the definition of a group:
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Definition. A group is a collection of elements, together with a composition law, that is, a way of
taking any two elements a and b and producing a third, a ◦b , with the following properties:

• There is an element, called the identity and written i , with the property that i ◦a = a ◦ i = a
for every other element a in the group.

• Every element a in the group has an inverse, written a−1, with the property that a ◦a−1 =
a−1 ◦a = i .

• Composition is associative: given any three elements a , b , and c in the group, a ◦ (b ◦ c ) =
(a ◦b ) ◦ c .

As promised, this definition doesn’t refer to any properties of the elements other than their
relationships to each other. The elements don’t have to be symmetries of some shape; there doesn’t
even need to be any shape in sight at all. As we will see in a moment, there are many examples
of groups that have nothing to do with symmetries at all, and the theory of groups has many
applications that are not directly related to geometry. So by abstracting away from the geometry
of symmetries will accomplish two things. The first is the one we’ve already mentioned: we will
be able to speak about the relevant properties of symmetry groups with a clearer sense of which
details are important and which are not. But the second, which is perhaps more valuable, is that
the things we learn about groups will have applications to more things than just symmetry groups,
as we’ll see as we go on.
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2 Examples and Basic Properties of Groups

Before we go on, we’re going to discuss a few examples of groups.

2.1 Groups of Numbers

Our first collection of examples consists of groups whose elements are numbers. In particular,
they don’t come from symmetry groups of shapes. If there’s any fact here that isn’t clear to you,
you should take some time to convince yourself before moving on.

• The integers form a group, usually written Z, in which the composition law is addition. That
is, we can declare that a ◦b = a +b for two integers a and b . The identity is 0, and the
inverse of some number n is −n . Addition is associative, so everything works.

• The real numbers also form a group in which the operation is addition, writtenR, in exactly
the same way.

• Neither the integers nor the real numbers form a group with subtraction as the composition
law. There are two problems: 0 looks like an identity if you put it on the right (x − 0 = x )
but not on the left (0−x 6= x unless x = 0). Also, subtraction isn’t associative. For example,
(1−1)−1=−1, but 1− (1−1) = 1.

• The real numbers almost form a group with multiplication as the composition law. Mul-
tiplication is associative, and 1 is the identity. The only problem is that 0 doesn’t have an
inverse. If you throw out 0, though, you do get a group, called R×, in which the inverse of
any number x is 1/x .

• If you try to make multiplication work by doing the same thing to Z, you run into more
problems than just 0: the only integers with multiplicative inverses are 1 and −1. Even
though, say, 3 has a multiplicative inverse in R, it doesn’t have one in Z, and so the nonzero
integers still don’t form a group. You can form a group out of just 1 and −1, and this is
isomorphic to the symmetry group of A that we discussed before: it has just one non-
identity element whose composition with itself (which in this case means its square) is the
identity.

2.2 Cyclic Groups

There is a class of groups related to the first example above which we’ll talk about a few more
times throughout these notes. Write Zn for the collection of numbers 0, 1, 2, . . . , n −1. Imagine the
numbers arranged in a circle, starting with 0, then 1, and so on, with n −1 at the end next to 0.
(For example, if n = 12, you’ll end up with the standard arrangement of the numbers on a clock
face, except with a 0 instead of the 12.) To compose two numbers, say a and b , start at the spot
marked a on the circle and move forward b spots. For example, to compose 7 and 3 in Z9, start
with the circle of numbers from 0 to 8, and move three spots forward from 7. The number you
land on is 1, as seen in Figure 5.

We’ll write ⊕ instead of ◦ for the operation in this group, so, for example, 7⊕3= 1 in Z9.
Notice that as long as you don’t pass 0 in your path around the circle, the number you end up

with is just a +b ; for example, in Z11, 4⊕2= 6. (In particular, 0 is the identity of Zn , though you
could also figure this out directly from the definition.)

This leads us to a slightly different description of the ⊕ operation which will help us to prove
that Zn is a group. Given two numbers a and b , there are two things that can happen when
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Figure 5: In Z9, 7⊕3= 1.

computing a ⊕ b : either you don’t pass 0 on the way from a to a ⊕ b , or you do. In the first
situation, you get a +b , and in the second, you get a +b −n . This is because, as we move forward,
we increase the number by 1 each time, but when we go from n − 1 to 0, our count drops by n
from what it should be. You can imagine a second circle sitting underneath the first one in which
all the numbers are n bigger. When we pass 0, a +b shows up as our position on the other circle.
For example, Figure 6 demonstrates that in Z6, 4⊕4= 4+4−6= 2.

Figure 6: When computing 4⊕4 in Z6, you can first compute 4+4, then subtract 6 to get back into the range
0, 1, 2, 3, 4, 5.

Put another way, computing a ⊕b is as simple as taking a +b and then subtracting n until
you end up in the range 0, 1, 2, . . . , n −1. This tells us two things. The first is that the inverse of a is
always n −a , because a +(n −a ) = n , and after we subtract n from that, we end up with 0. The
second is that ⊕ is associative: regular addition is associative, so a ⊕ (b ⊕ c ) and (a ⊕b )⊕ c are
both just a +b + c minus enough copies of n to get the number into the right range. This was all
we needed to make Zn into a group.

The groups Zn are called cyclic groups, and they will be an important source of examples later
on. The description of ⊕ that we just gave can be used to draw up a composition table for the
cyclic groups like the ones in Section 1. One for Z5 is shown in Table 1.

2.3 Dihedral Groups

The dihedral groups are the symmetry groups of regular polygons. The symmetry group of a
regular polygon with n sides will be written Dn . In all the groups we’ve considered up to this point,
the order in which we composed elements hasn’t mattered, that is, a ◦b is always equal to b ◦a .
Notice, though, that this isn’t part of the definition of a group, and in fact, there are groups in
which it doesn’t always happen. When a ◦b =b ◦a , we say that a and b commute, and a group in
which elements always commute, like all the ones we’ve looked at so far, is called abelian.
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Consider D3, the symmetry group of an equilateral triangle. Just as in Section 1, there are two
types of symmetries: rotations and reflections. For example, you can rotate the triangle by 120
degrees, or reflect it around a line going through one of the vertices and the opposite edge. We can
place a small mark on one of the corners of the triangle to keep track of what’s happening to it
when we perform these symmetries. By doing this, we can see very easily that the two symmetries
we just mentioned don’t commute, as shown in Figure 7. Therefore, D3 is not abelian.

Figure 7: The elements h and r 120 in D3 don’t commute.

There are exactly two rotations that act as symmetries of the triangle: rotating by 120 degrees
or by 240 degrees. There are also three reflections: for each vertex of the triangle, you can reflect
around the line from that vertex to the opposite edge. Together with the identity, this makes for a
total of six symmetries. If you’re not convinced that this is all the symmetries there are, you should
take a moment to verify it by considering what each symmetry can do to each of the vertices of the
triangle.

Just like we did for the symmetry groups in Section 1, we can give names to each of the
symmetries in D3 in order to write up a composition table. Let’s call the rotations r 120 and r 240

and the flips h, d 1, and d 2 according to Figure 8.

Figure 8: Names for the elements of D3.

Then the composition table is given in Table 2.
In fact, a regular polygon with n sides always has exactly 2n symmetries. To see that this is

true, we pick one of the vertices of the polygon. Any symmetry is going to have to send that vertex
to another vertex, so there are n possible choices for what can happen to the one we chose. Since

0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 1: A composition table for Z5.
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the symmetry can’t change the shape of the polygon, the neighbors of our chosen vertex have to
be taken to the neighbors of the new vertex. The only thing that can change is which one is on
which side. There are two choices for this: either the neighbor on the left stays on the left, or it
switches to the right, and vice versa (Figure 9.)

Figure 9: How to pick a symmetry of a polygon. First, decide where the chosen vertex goes, then decide
whether its neighbors should switch places.

But once these choices have been made — where our chosen vertex goes and where to put its
neighbors — everything else about the symmetry is completely determined. The neighbors of the
first vertex have been placed, so their neighbors only have one possible place to land, so the same
is true of their neighbors, and so on. Since there were n choices for where to put the first one, and
each of those choices gave 2 further choices, there are a total of 2n ways to pick our symmetry.

Just as there were two rotations in D3, there will be n −1 rotations among the symmetries in
Dn : after picking a vertex, you can rotate the polygon until it lands on any other vertex of your
choice, and there are n − 1 other vertices to choose from. The other n symmetries are all flips,
which you should verify for yourself.

Look at the part of the composition table for D3 that just comes from the rotations and the
identity:

i r 120 r 240

i i r 120 r 240

r 120 r 120 r 240 i
r 240 r 240 i r 120

Notice that the only entries in the table are the rotations and the identity. This makes sense:
you can’t get a flip by composing two rotations. In fact, even more is true: these elements form a
group all by themselves. They have the identity, they can be composed, and the inverse of every
element is already present. We say that the rotations and the identity form a subgroup of D3,
meaning a subset which is still a group with the same composition law. (We’ll discuss subgroups a
bit more later on.) This subgroup is, in fact, isomorphic to Z3: r 120 can serve the role of 1 and r 240

can be 2.

i r 120 r 240 h d 1 d 2

i i r 120 r 240 h d 1 d 2

r 120 r 120 r 240 i d 1 d 2 h
r 240 r 240 i r 120 d 2 h d 1

h h d 2 d 1 i r 120 r 240

d 1 d 1 h d 2 r 240 i r 120

d 2 d 2 d 1 h r 120 r 240 i

Table 2: A composition table for D3.
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2.4 Basic Properties of Groups

Working directly from the definition of a group, it’s possible to prove facts about all groups at
the same time, whether or not they’re the groups we’ve talked about so far. For example, the
cancellation law says that if you have three elements a , b , and c in any group and a ◦b = a ◦ c ,
then b = c . You may compose with a−1 on the left to get that a−1 ◦ (a ◦b ) = a−1 ◦ (a ◦ c ), then use
associativity to get (a−1 ◦ a ) ◦b = (a−1 ◦ a ) ◦ c . By the definition of inverses, we get i ◦b = i ◦ c ,
which means that b = c .

The cancellation law is itself useful for other things, like the uniqueness of inverses: if a ◦b = i ,
then b = a−1; that is, there can only be one element which acts as an inverse for a . This is simply
because i = a ◦a−1, and we may then apply the cancellation law to the equation a ◦b = a ◦a−1.

As we go forward in our study of groups, it will be convenient to be have access to a few more
pieces of notation and terminology, which we introduce now. For any element a in a group, we
write a n for the element you get by composing a with itself n times. (That is, a 4 = a ◦a ◦a ◦a .)
Because composition in a group is associative, it doesn’t matter how you group the copies of a or
in which order you perform the composition.

We then define the order of a to be the smallest positive number n so that a n is the identity.
For example, in D3, the rotations have order 3, each of the flips has order 2, and the identity has
order 1. In the group Z of integers under addition, no amount of composing 1 with itself will give
you the identity, 0. In this case, we say that 1 has “order infinity.”

Exercises

1. Write up composition tables for Z2, Z3, and Z4.

2. Recall that two groups are called isomorphic if the only difference between their composition
tables is the way the elements are labeled, as was the case for the symmetry groups of A
and N. Among the four groups whose composition tables appeared in Section 1, three are
isomorphic to cyclic groups and one isn’t. Which is which?

3. Give an argument like the one for associativity to show that all cyclic groups are abelian.

4. Prove that every group with two elements is isomorphic to Z2 and every group with three
elements is isomorphic to Z3. Is the same true of groups with four elements?

5. Prove that the cyclic groupZ2n has a subgroup isomorphic toZ2 and a subgroup isomorphic
to Zn .

6. Write up a composition table for D4.

7. Prove that in any dihedral group Dn , the rotations form a subgroup which is isomorphic to
the cyclic group Zn .

8. How many two-element subgroups are there in Dn if n is odd? If n is even?

9. Describe the group of rotational symmetries of the cube. How many elements are there?
What do they do the cube? What are their orders?

10. A permutation of a set X is a way of “rearranging” the elements of X , that is, a function from
X to itself for which no two elements are sent to the same place. Let Sn be the collection of
permutations of the set {1, 2, . . . n}. (For example, an element of S5 is the permutation which
sends 1 to 4, 4 to 3, and 3 to 1, and switches 2 and 5.) Permutations can be composed the
same way as symmetries: first do one, then the other. Prove that Sn is a group using this
composition law. How many elements does it have?
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11. Prove that if j is an element of a group which “acts like the identity” in the sense that j ◦a = a
for some element a , then j actually is the identity.

12. Prove that, in the composition table for any finite group, every element appears exactly once
in each row and exactly once in each column.

13. Prove that, in any group, (a ◦b )−1 =b−1 ◦a−1, and that if (a ◦b )−1 = a−1 ◦b−1, then a and b
commute.

14. Prove that an element of a group has order 2 if and only if it is its own inverse.

15. Prove that (a n )−1 = (a−1)n . (We usually write this as a−n , since there is no ambiguity about
which of these two things we could mean.)

16. Given an element a of a group G , we write 〈a 〉 for the subset of G consisting of all powers
(positive or negative) of a . Prove that 〈a 〉 is a subgroup, and that the number of elements it
has is equal to the order of a .

17. If the order of a is n (in particular, it’s finite), prove that 〈a 〉 is isomorphic to the cyclic group
Zn .

18. Suppose G is a group with n elements and some element of G has order n . Prove that G is
isomorphic to Zn .
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3 Cosets and Lagrange’s Theorem

3.1 The Proof of Lagrange’s Theorem

This section is devoted to proving an important theorem about finite groups: if G is a finite group
and H is a subgroup of G , then the number of elements in H divides the number of elements in
G . This fact, called Lagrange’s Theorem, is very useful in the study of group theory, and even has
applications to other areas of mathematics, as we’ll see at the end of this section.

In order to prove Lagrange’s Theorem, we first need to discuss the concept of a coset. Say H is
a subgroup of some group G . For any element a in G , we write a ◦H for the set of all elements
of the form a ◦h for some element h of H . That is, a ◦H is the set of all elements of G which are
expressible as the composition of a and something in H . These are sometimes called left cosets;
we could equally well be considering right cosets, sets of the form H ◦a , but the proof of Lagrange’s
Theorem won’t require us to. Before we go any further, we discuss a few examples:

• H itself is always a coset: it’s the coset of the identity. In fact, if a is any element H , then the
coset a ◦H is just H . Clearly anything in a ◦H is in H , since H is a subgroup and therefore
contains all compositions of all of its elements. And if b is some element of H , we can write
b = a ◦ (a−1 ◦b ), and a−1 ◦b is an element of H , and so b is in a ◦H .

• Take G =Z, the group of integers under addition. For any integer m , there is a subgroup of
Z consisting of all multiples of m . (This subgroup is usually denoted mZ.) To see that it’s a
subgroup, you just need to notice that (1) 0, the identity, is always a multiple of m , no matter
what m is, and (2) if m a and mb are two different multiples of m (any multiple of m looks
like this by definition) then m a +mb =m (a +b ) and −m a =m (−a ) are both multiples of
m , and so mZ contains all compositions and inverses of its elements.

If a is some other integer, then the coset a+mZ consists of every integer of the form a+mb
for some b . For example, if m = 5 and a = 2, then the coset 2+5Z contains, among others,
the numbers 2, 7, 12, 17, −3=−5+2, and −8=−10+2.

• Similarly, if G = Zn and m is some integer that divides n , then there is a subgroup of Zn

consisting of the multiples of m , called mZn . We check first that this is a subgroup. First, it
contains 0. If m a and mb are two elements of mZn , then m a ⊕mb is still a multiple of m :
we might have to subtract n from m (a +b ), but n is a multiple of m , so this is okay. Finally,
the inverse of m a is n −m a , and since n is a multiple of m , this is as well.

If we take n = 12 and m = 3, then 3Z12 = {0, 3, 6, 9}, and there are exactly three cosets: there
is 0⊕3Z12 = {0, 3, 6, 9}, 1⊕3Z12 = {1, 4, 7, 10}, and 2⊕3Z12 = {2, 5, 8, 11}. Any other coset ends
up being the same as one of these three, according to which of these three cosets it belongs
to.

• If G = Dn and H is the subgroup consisting of the rotations and the identity, then there
are exactly two cosets of H : H itself and the flips. As mentioned above, if a is in H , then
a ◦H =H . And if b isn’t in H , then b is a flip, and the composition of a flip with anything in
H is still a flip (which you should check) and so b ◦H consists of the flips.

The last two examples suggest an important fact about cosets, which turns out to always be
true: two cosets a ◦H and b ◦H are the same exactly when b is in a ◦H (or the other way around,
of course). We can check this directly from the definition of a coset. One direction is easy: if
a ◦H =b ◦H then, since a = a ◦ i is in a ◦H , we get that it’s also in b ◦H . For the other direction,
if b is in a ◦H , then b = a ◦ k for some k in H . But then anything of the form b ◦h where h is
in H can be written as a ◦ k ◦h, and k ◦h is in H , so this element is actually in the coset a ◦H .
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This argument shows that b ◦H is contained in a ◦H . Since there was nothing special about the
elements a and b , we can run the exact same argument but with a and b switched to get that
a ◦H is contained in b ◦H , and these two facts together let us claim that the sets are equal.

This lets us show that, when G is finite, the cosets of H partition G into equally sized subsets,
that is, G is cut up into equally-sized, non-overlapping pieces, each of which is a coset of H . First,
every element of G is in a coset: its own. Two different cosets can’t overlap: if a ◦H and b ◦H
overlap, then they contain some common element, say c . But by what we just showed, this means
that c ◦H = a ◦H and c ◦H =b ◦H , so our two original cosets were actually the same.

So it just remains to show that all cosets have the same size. In fact, all cosets have the same
number of elements as H . Given some coset a ◦H , we can pair off the elements of H with the
elements of a ◦H by putting an element h in H with the element a ◦ h in the coset. This is a
one-to-one correspondence: everything in a ◦H is hit by definition, and if a ◦h = a ◦h ′, then
h = h ′ by cancellation.

So, since we have cut G up into equally-sized pieces and all those pieces have the same size as
H , we see that the size of H has to divide the size of G . By the same reasoning, we also get that the
number of cosets is |G |/|H |, where |S| is the number of elements in some set S. We can see that
this is true in both of the finite examples above: in the cyclic group example, there are n

m
elements

in mZn , and there are n elements in the subgroup of Dn consisting of rotations and the identity.
Using Exercise 14 of Section 2, Lagrange’s Theorem has an immediate and very useful conse-

quence: since the order of an element a in G is the same as the size of the subgroup 〈a 〉, we also
get that the order of a divides the size of G . This will be useful in the number-theoretic application
that follows.

3.2 Fermat’s Little Theorem

As an application of these ideas, we prove a statement in number theory called Fermat’s Little
Theorem. For this section, we assume some familiarity with a few basic notions from number
theory, which we’ll go over very briefly here without proving anything.

Pick some positive integer m which we’ll keep fixed for this whole discussion. Given two
integers a and b , we say that they are congruent modulo m , and write a ≡b (mod m ), if a −b is a
multiple of m . The key fact about this relationship is that it’s nice to addition and multiplication.
That is, if a ≡ a ′ (mod m ) and b ≡ b ′ (mod m ), then a + b ≡ a ′ + b ′ (mod m ) and ab ≡ a ′b ′

(mod m ). (If you’re never done this before, it’s worth working out why these facts are true on your
own. For the second, one method is to replace a with a ′, then b with b ′, in two different steps.)

The other fact that we need to invoke is sometimes called the Division Algorithm: given any
integer a , there is a unique way to write a =qm + r where r is between 0 and m −1. We call q the
quotient and r the remainder. From the division algorithm, it’s possible to prove the following
useful fact: two integers a and b are relatively prime (that is, they have no common factors) if and
only if it is possible to write 1= a s +b t for some integers s and t .

This idea of congruence gives us a more sophisticated way to think about the cyclic group Zm .
We can divide the integers into m different sets, called equivalence classes so that any numbers
in the same set are congruent modulo m . For example, if m is 3, then one set will contain the
multiples of 3, one will contain the numbers which are 1 more than a multiple of 3 (and therefore
congruent to 1 modulo 3), and the last the numbers which are 2 more than a multiple of 3. If m is
2, the classes are just the even numbers and the odd numbers.

Every integer will belong to a unique equivalence class. We can then think of Zm as consisting
not of numbers but of these equivalence classes: instead of 0, we take the equivalence class that 0
belongs to (that is, the multiples of m ); instead of 1, we take the class that 1 belongs to, and so on.
Then in order to add equivalence classes, we just take one member of each class and add them,
and see what class we end up in. The fact that congruence modulo m is nice to additon means
that it doesn’t matter which elements of each class we pick.
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We can use this idea to try to define a multiplicative version of Zm , which we’ll call Z×m . Since
congruence modulo m is also nice to multiplication, we won’t run into any problems defining
the composition law in Z×m , which we’ll call �. The only problem we might run into is finding
inverses. For any integer a , an inverse for the class of a in Z×m will be some integer b so that ab ≡ 1
(mod m ). If a and m have a common factor, say d , then this can never happen: d will also be a
factor of ab , but since it’s also a factor of m , d will divide any number of the form ab +k m . In
particular, such a number can’t be 1.

But if a and m have no common factors, we can use the statement we mentioned above
after the Division Algorithm: we can write 1 = a s + t m , and s will be our inverse for a , since
a s = 1− t m ≡ 1 (mod m ). So we can make Z×m into a group so long as we only include numbers
which are relatively prime to m .

Fermat’s Little Theorem states that, if p is a prime number and a is any number that isn’t a
multiple of p , then a p−1 ≡ 1 (mod p ). In the language of group theory, this is a statement about
the order of a in the group Z×p . Now, since p is prime, any number that isn’t a multiple of p has
no factors in common with p . So of the equivalence classes, the only one we need to exclude is
the class of 0, the one which contains the multiples of p . This means that Z×p has p −1 elements.
But then Lagrange’s Theorem tells us that the order of a divides p −1, say n is the order of a and
p −1= nk . Then a p−1 ≡ (a n )k ≡ 1k ≡ 1 (mod m ), which proves the theorem.

Exercises

1. If f is a flip in a dihedral group Dn , what is the size of the subgroup H = 〈 f 〉? How many
cosets does H have? What do they look like?

2. Prove that a ◦H is a subgroup of G if and only if a is in H .

3. Prove that a ◦H =b ◦H if and only if a ◦b−1 is in H .

4. If G is a group with n elements, prove that for any element a in G , a n is the identity.

5. Prove that if a group G has an element of order n , and m divides n , then G has an element
of order m .

6. Prove that any group with 12 elements has an element of order 2.

7. Use Exercise 15 from Section 2 and Lagrange’s Theorem to show that every group with a
prime number of elements is isomorphic to a cyclic group.

8. Use the fact that the order of an element divides the order of a group to show that Z×m has an
even number of elements whenever n > 2.

9. For any positive integer m , we writeφ(m ) for the number of integers in the range 0, 1, . . . , m−
1 which are relatively prime to m . Generalize the proof of Fermat’s Little Theorem to show
that, if a is relatively prime to m , then aφ(m ) ≡ 1 (mod m ).

10. Use Lagrange’s Theorem to show that n |φ(a n −1) for any integers a > 1, n ≥ 1.
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4 Group Actions

4.1 Basic Definitions

In spite of the fact that our aim was to abstract the notion of a group away from the geometric
objects they came from, it’s often necessary to keep track of what a group “does” to some other
object in a systematic way. After all, one of the reasons to study the symmetry group of a square is
to learn things about the square. This brings us to the notion of a group action, which is meant to
capture this idea.

Just as we did for groups themselves, we can extract the definition of a group action from the
properties of our basic examples. The basic idea is that if G is some group and S is a set, we will
say that G acts on S if all the elements of G “move around” the elements of S, just as the elements
of D3 move around the vertices of the triangle. The point of the beginning of this section is to
make this idea precise.

Consider the example of D4 acting on the vertices of a square. If x is one of those vertices and
g is some element of D4, we write g .x for the point that x goes to after applying g . (See Figure 10.)

x h.x
x=d.x

x

r    .x180

Figure 10: Some examples depicting g .x for various choices of g , where x is the vertex in the upper-left
corner.

When we were deciding on the definition of a group in the last section, we needed to figure out
which properties of composition which could be described without referring to the geometry that
inspired it. Now we need to do the same for the action of a group: we need to see how to describe
a group action using properties that depend only on its interaction with group composition.

The first of these has to do with the identity. Remember how we defined the identity in the first
place: it was the symmetry which left everything in the same place. This property doesn’t require
us to know any geometric facts about the set G is acting on, so it can go on our list: if G is a group
acting on a set X , i is the identity element of G , and x is some element of X , then i .x = x .

The second relates to composition. Remember that we defined g ◦h as the symmetry which
you get by doing h, then g . What this means in terms of the group action is that g ◦h should act
on an element x by first applying h — which takes it to h.x — and then applying g to that. In
other words, (g ◦h).x = g .(h.x ). (This is the reason we defined composition the way we did in
Section 1.)

These two properties turn out to be enough:

Definition. We say that a group G acts on a set X if, for every pair of elements g in G and x in X ,
there is a corresponding element g .x in X with the following properties:

• If i is the identity, then i .x = x for any x .

• If g and h are elements of G , then (g ◦h).x = g .(h.x ) for any x .

There is one more natural property of symmetries that we could have included in this list:
the way inverses act on elements of X . Given the way we defined inverses in Section 1, it seems
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natural to insist that g −1 take g .x back to x . The reason we didn’t include it in our definition is
that it already follows from the two properties we gave: g −1.(g .x ) = (g −1 ◦ g ).x = i .x = x .

We study group actions both to learn more about the groups and about the objects on which
they act. In order to help us do both of these things, we introduce a couple of terms.

If x is some element of X , the orbit of x , written G .x , is the collection of all elements of X
which can be written as g .x for some g in G . The stabilizer of x , written StabG (x ) (or just Stab(x )
if the group G is clear from context), is the collection of all elements g in G for which g .x = x .
We say that such elements fix x . Given some element g in G , the invariant set of g , written X g ,
is the collection of elements of X for which g .x = x . Even though the definitions are similar, it’s
important to keep the stabilizer and the invariant set apart: the stabilizer lives in the group and
the invariant set lives in the set.

Examples.

1. Any dihedral group, say Dn , acts on the vertices of a regular n-gon. Given any two vertices,
there is at least one symmetry of the n-gon which takes the first to the second, so all the
vertices are in the same orbit. (When this happens, we say that the action is transitive.) The
identity fixes everything — this is always true by definition — but none of the rotations fix
anything.

Every vertex is fixed by exactly one reflection: the one around the axis that goes through that
vertex. So the stabilizer of every point has two elements: the identity, and that one reflection.
The invariant set of the identity is everything, of a rotation is empty. If n is odd, then every
axis of reflection passes through a vertex, so every reflection has that vertex in its invariant
set. (See Figure 11.) If n is even, there are two kinds of reflections: the ones through edges
and the ones through vertices. (Also see Figure 11.) In the first case, the reflection has no
invariants, and in the second, it has two.

Figure 11: The three types of axes of reflection for elements of Dn

2. Any group acts on itself by setting g .h = g ◦ h. Again, this action is transitive — that is,
there’s only one orbit — and this time, all the stabilizers contain just the identity and all the
invariant sets are empty, except for the identity, which has everything.

3. The multiplication-mod-n group Z×n acts on Zn by setting a .b = ab . If n is 6, for example,
then Z×6 consists of just 1 and 5, and StabZ×6 (3) is all of Z×6 . Since 3 is the only element fixed
by 5, all other stabilizers just contain 1.

4. An involution on a set X is a function f from X to itself with the property that f ( f (x )) = x for
any x . An involution on X is essentially the same as an action of Z2 on X : just set 1.x = f (x ).
Since 1⊕1= 0, and 0 is the identity, saying this is a group action is the same as saying the
function is an involution.

5. Any invertible function f from X to itself gives an action of Z on X : set 1.x = f (x ) and
(−1).x = f −1(x ). Suppose that applying f to any element n times is the same as doing
nothing. In this case, for the same reason as in the previous example, this also gives an
action of Zn on X .
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6. As an example of this, consider the function from the set X = {a ,b , c , d , e } defined as follows:

a 7→b b 7→ d c 7→ e d 7→ a e 7→ c

The elements a , b , and d form an orbit, and the elements c and e form a separate one.
Applying the function three times fixes everything in the first orbit, but not the second.
Applying it twice fixes the second, but not the first. This means that applying it six times
fixes everything. So this function gives us an action of Z6 on X . Everything in the a -b -d
orbit is fixed by 0 and 3, and everything in the c -e orbit is fixed by 0, 2, and 4.

4.2 The Orbit-Stabilizer Theorem

Studying orbits and stabilizers is useful because of the following fact, called the Orbit-Stabilizer
Theorem: if G is a finite group acting on a set X , and x is an element of X , then |G .x |= |G |/|Stab(x )|.
(Recall that |S| denotes the number of elements in S.) First, notice that the right-hand side is the
number of cosets of Stab(x ). The way we will prove this statement, then, is by finding a one-to-one
correspondence between cosets of Stab(x ) and elements of G .x .

Take some coset g ◦Stab(x ). To this coset, we assign the element g .x . In order for this to make
sense, we need to check that we didn’t accidentally assign our coset to more than one element
of the orbit: the coset can correspond to more than one element of G . If g ◦Stab(x ) = h ◦Stab(x ),
though, we know that g = h ◦ s for some s in the stabilizer. So in fact, g .x = h.(s .x ) = h.x , so
our definition indeed makes sense. This argument goes the other way as well: if g .x = h.x , then
h−1 ◦ g is in the stabilizer, which means that g ◦Stab(x ) = h ◦Stab(x ) by Exercise 3 from Section 3.
This shows that different cosets are assigned different elements of the orbit: if they’re assigned
the same element of the orbit, they were actually the same coset. Everything in the orbit is hit by
definition, so we do have a one-to-one correspondence.

Examples.

1. In Example 1 above — the action of Dn on a regular n-gon — the stabilizer of any point has
2 elements, the orbit (which is everything) has n elements, and the group has 2n elements,
so the theorem holds.

2. The Orbit-Stabilizer Theorem, when combined with Lagrange’s Theorem, says that the size
of any orbit has to divide the size of the group. In some cases, this can be used to analyze
the orbits. For example, if |G | = 15 and |X | = 7, then there has to be an element fixed by
everything in G , that is, an element which is in an orbit all by itself: if not, then every orbit
has 3, 5, or 15 elements, and there is no way to get 7 by adding only these numbers.

4.3 Burnside’s Lemma

The orbit-stabilizer theorem, in turn, gives us a great way to count the number of orbits of a group
action, called Burnside’s Lemma. The lemma says that the number of orbits of the action of a
group G on a set X is the sum of the sizes of the all the invariant sets divided by the size of G . That
is, there are 1

|G |

∑

g∈G |X g | orbits.

We can prove this by counting the sum
∑

g∈G |X g | in two different ways. That sum is the same
as the number of pairs (g ,x ) for which g .x = x . While we have divided these pairs into invariant
sets by looking at different values of g , we can equally well divide them into stabilizers by looking
at different values of x . So this sum is the same as the sum of the sizes of the stabilizers, that is,
∑

x∈X |Stab(x )|.
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By the Orbit-Stabilizer Theorem, this sum is
∑

x∈X (|G |/|G .x |) = |G |
∑

x∈X (1/|G .x |), so we just
need to find out what that sum is. We can group the elements of x into orbits. Each orbit Y
will contribute 1/|Y | to this sum for each element, and it will do so |Y | times. That is, each orbit
contributes 1 to this sum, so the sum is actually just the number of orbits. Dividing by |G | gives
the result.

Examples.

1. Suppose we are building necklaces of six beads selected from a set of one of two colors. For
some examples, see Figure 12.

A B C D

Figure 12: Some of the necklaces we’re talking about in Example 1.

Now, necklaces B and C are, in some sense, the same: if I turn C over, reflecting it along the
line running through the beads on the upper-left and lower-right, I get B. Thinking of pairs
these as being the same necklaces, how many “essentially different” necklaces can I get?

There is an action of D6 on the collection X of all possible necklaces which, for any symmetry
a in D6, simply applies a to the necklace. Any two necklaces in the same orbit of this action
are ones we’re considering the same, so what we’re asking for is the number of orbits of this
action. For this, we need to count the sizes of the invariant sets of each element of D6. You
should check all of the claims in this argument and convince yourself that they’re true.

First, consider the reflections. There are two types of reflections: the ones through edges
and the ones through vertices. For the ones through edges, the beads on one side have to be
the same as the beads on the other, so there are 3 beads which are free for us to pick, giving
8 necklaces in the invariant set. For the ones through vertices, the same is true, but the axis
passes through two of the beads, so there are 4 for us to pick, giving 16 in the invariant set.
All together then, the reflections contribute 3 ·8+3 ·16= 72 to the sum of the sizes of the
invariant sets.

The identity fixes every necklace, so its invariant set has 26 = 64 necklaces. Rotations by 60
and 330 degrees only fix the all-white and all-black necklaces. Rotations by 120 and 240
degrees fix a necklace as long as the colors “alternate”: a bead in some position needs to be
the same color as the one two spots over. So we can divide the bead positions into pairs of
adjacent beads; we’re free to pick the colors in one of the pairs, but then the others have to
match. This gives 4 necklaces. Similarly, the rotation by 180 degrees leaves us free to pick
3 beads, giving 8 necklaces. So our entire sum is 72+ 64+ 2+ 2+ 4+ 4+ 8 = 156, giving
156/12= 13 essentially different necklaces.

2. With necklaces of six beads, it is possible to count by hand. To solve this problem for some
other number, you need to be able to divide the rotations into groups based on how many
choices you’re allowed to make for a necklace which is fixed by that rotation. In general, this
depends on the order of that rotation, and it’s possible to get rotations of lots of different
orders, making the calculation very messy.

If p is some prime number, though, all the rotations have order p : the group of rotations
has p elements, and if r is a rotation, then |〈r 〉|, which is the order of r , divides p , so it has
to be p unless r is the identity. This makes it very easy to count the necklaces fixed by r :
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it’s just the all-black and all-white necklaces. Also, unlike in the case with six beads, all the
reflections look more or less the same: they pass through one vertex and one edge, giving us
p+1

2
beads whose colors we can pick. So the rotations contribute 2(p −1) to the sum, the

identity contributes 2p , and the reflections p · 2
p+1

2 . All together, after dividing by 2p , we

have 1
p
(p −1+2p−1+p ·2

p−1
2 ) essentially different necklaces.

3. We can use Burnside’s Lemma to count the number of distinct ways of painting the faces of
a cube with n different colors, where two paintings are “distinct” if there is a way to rotate
the cube to take one to another. This is the same as the number of orbits of the action of
the rotation group of the cube on the collection of colorings. This example is a sketch; you
should fill in the details and check all the computations.

Call the group of rotations G . At the risk of ruining a problem from Section 2, we describe
this group and the colorings which are fixed by its elements. There are:

• The identity, which fixes all n 6 colorings of the faces.

• Six 90-degree rotations around axes that go through pairs of opposite faces. A coloring
fixed by such a rotation can have any color on the top or bottom, and has to have the
same color on all the sides, leaving 3 faces to choose colors for, meaning n 3 colorings.

• Three 180-degree rotations around axes that go through pairs of opposite faces. Each
of these has n 4 fixed colorings.

• Six 180-degree rotations around axes that go through pairs of opposite edges. Each of
these has n 3 fixed colorings.

• Eight 120-degree rotations around axes that go through pairs of opposite vertices. Each
of these has n 2 fixed colorings.

All together, then, there are 1
24
(n 6+ 3n 4+ 12n 3+ 8n 2) colorings. For n = 2, this is 10. For

n = 3, it’s 57.

Exercises

1. Recall the definition of the group Sn of permutations of a set of n elements from Exercise 10
of Section 2. There is an action of Sn on the set {1, 2, . . . , n} which comes from the definition:
a permutation in Sn is a way of rearranging the numbers because of the way we defined it,
so that tells us what it does to each number in the set. Describe the stabilizer of an element
of the set. What group does it look like?

2. We say that a group G acts faithfully on a set X if no elements of G other than the identity
fix everything in X . Suppose G acts faithfully on a set with n elements. Show that G is
isomorphic to a subgroup of Sn .

3. Consider the action of the group of rotations of the cube on the collection of pairs of opposite
vertices on the cube. Use the previous problem to show that G is isomorphic to S4.

4. Show that the group of all symmetries (not just rotations) of a regular tetrahedron is isomor-
phic to S4.

5. Say G has n elements, and p is the smallest prime number dividing n . If k < p , describe all
possible actions of G on a set of k elements.

6. Say p is a prime number, and the number of elements in G is a power of p , say p n . If G acts
on some set X , and there aren’t any points which are fixed by everything in G , show that p
divides the size of X .
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7. Fill in the details in the example about coloring faces of the cube.

8. Suppose we make n ×n tiles by taking a grid and coloring each square black or white. For
example, these are possible tiles when n = 3:

We regard two tiles as the same if one can be moved around — either rotated or reflected —
to get the other. For example, the tiles in each pair above are the same. How many different
possible tiles are there?
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