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These are notes for the class Five Programming Languages in Ten Days, which was taught at
Canada/USA Mathcamp in 2012 by Nic Ford and Asilata Bapat. If you’re not reading them as part
of that class, you should know that they were written as a supplement to the lectures that were
given in the class, and not as a replacement for them. Read at your own risk.

1 Scala
Scala is built on top of the Java Virtual Machine, so when you’re writing Scala code, you’ll have
access to all the classes in Java’s standard libraries. In particular, a lot of Java code is very easy to
turn into Scala.

But Scala can do so much more than this. It has tools built in to easily facilitate functional
programming, a style of programming in which variables are constants, functions do nothing but
compute and return a value, and the entire execution chain consists of evaluating some functions
on some inputs and seeing what happens. Scala will serve as our bridge between the imperative
and functional styles, and once we move on to the languages that come after it, the familiar
Java-like imperative scaffolding will start to fall away. Let’s get started.

1.1 Values, Arithmetic, and Control Structures

You can open the Scala interactive interpreter by going to a terminal and typing scala. Here you
can type expressions and have Scala evaluate them for you:

1 scala > 1+1
2 res0: Int = 2
3

4 scala > "hello"
5 res1: java.lang.String = hello
6

7 scala > 5+3+"1"
8 res2: java.lang.String = 81
9

10 scala > 5+(3+"1")
11 res3: java.lang.String = 531

You can also put some code in a file, say test.scala, and run it all at once by going to a
terminal and typing scala test.scala (or whatever the file is called.) If you want to load code
from an external file in the interactive interpreter, you can type (for example) :load test.scala.

There are two quick things to notice here: one is that strings are Java strings. This is something
that happens in Scala sometimes; Java types will sort of creep in from the background in places
where the designers of the language thought it would be appropriate.

The second thing to notice is that, while Scala cares a lot about types, it’s willing to to change
the types of objects in situations where it would make sense. So when you try to add an integer to
a string, it’s willing to turn the integer into a string in order to make that happen.

The central idea of functional programming is that functions shouldn’t have side-effects —
that is, the only thing a function should do when it’s called should be to compute a value to return
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and return it. But Scala isn’t a purely functional language; it’s a hybrid. So there are functions that
have side-effects:

1 scala > println ("hey there")
2 hey there

Like in Java, there is an if in Scala, but it works a little differently. The expression “if
(condition) a else b ” is an expression, just like 1+3, and it evaluates to a if the condition
is true and b otherwise:

1 scala > 1 + (if (1 < 2) 1 else 2)
2 res0: Int = 2

Of course, the expressions can also have side-effects:

1 scala > if (1 == 1)
2 | {
3 | println ("in here !")
4 | println ("for real !")
5 | }
6 in here!
7 for real!

Note that, like in Java or other C-like languages, you can put multiple instructions into a code
block using curly braces.

You can declare variables using either val or var. The difference is that variables declared
using val are immutable, that is, they can never be changed once they’re assigned:

1 scala > var a = 1
2 a: Int = 1
3

4 scala > val b = 2
5 b: Int = 2
6

7 scala > a+b
8 res0: Int = 3
9

10 scala > a = 4
11 a: Int = 4
12

13 scala > a+b
14 res2: Int = 6
15

16 scala > b = 8
17 <console >:5: error: reassignment to val
18 b = 8
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19 ^

Because Scala is a hybrid language that allows you to easily use functional and imperative
styles, they make it easy to create both mutable and immutable variables. When we graduate to
languages that are more fully committed to the functional paradigm, we’ll find it correspondingly
more difficult to make variables mutable.

Scala also has standard C-like loops, like while and for:

1 scala > var i = 1
2 i: Int = 1
3

4 scala > while (i < 40)
5 | {
6 | println(i*i)
7 | i += 1
8 | }
9 1

10 4
11 9
12 [...]
13 1444
14 1521
15

16 scala > var j = 0
17 j: Int = 0
18

19 scala > for (k <- 1 until 4) j += k
20

21 scala > j
22 res0: Int = 6

Notice that the range 1 until 4 excludes 4 and includes 1. The expression 1 until 4 is an
example of a range:

1 scala > val r = 1 until 4
2 r: Range = Range(1, 2, 3)
3

4 scala > val s = 1 to 10
5 s: Range.Inclusive = Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
6

7 scala > r.start
8 res0: Int = 1
9

10 scala > r.end
11 res1: Int = 4
12

13 scala > r.step
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14 res2: Int = 1
15

16 scala > s.end
17 res3: Int = 10
18

19 scala > s by 2
20 res4: Range = Range(1, 3, 5, 7, 9)
21

22 scala > s
23 res5: Range.Inclusive = Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
24

25 scala > 0 to 8 by 3
26 res6: Range = Range(0, 3, 6)

Note that by is an operator that takes a range and returns a new one with a different step, but
(like most operators and functions in Scala) doesn’t change the value of its parameter.

1.2 Collections

Scala also has tuples, which are arbitrary combinations of elements, maybe of different types:

1 scala > val t = (1, "two")
2 t: (Int , java.lang.String) = (1,two)
3

4 scala > t._1
5 res0: Int = 1
6

7 scala > t._2
8 res1: java.lang.String = two
9

10 scala > t._3
11 <console >:6: error: value _3 is not a member of (Int , java.lang.

String)
12 t._3
13 ^

(Here ._ isn’t a special operator; we’re accessing the member _1 of the object t. You can see
evidence of this in the interpreter’s response to line 10.)

You can use tuples to make assignments to multiple variables at once using Scala’s pattern-
matching system:

1 scala > val (a, b) = t
2 a: Int = 1
3 b: java.lang.String = two
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This is a feature that we’ll explore more deeply with the languages we encounter later in the
course.

Scala supports a few other basic collections. A list is an ordered collection of variable length:

1 scala > val a = List(1,2,3)
2 a: List[Int] = List(1, 2, 3)
3

4 scala > a(2)
5 res0: Int = 3
6

7 scala > 4::a
8 res1: List[Int] = List(4, 1, 2, 3)
9

10 scala > (5::7::3:: Nil)(1)
11 res2: Int = 7

In Scala, the built-in constant Nil refers to an empty list, and :: is the list construction
operator, which takes an entry and another list and returns a new list with the entry at the head.
Lists are store internally as a head, which is the single element at the beginning of the list, and a
tail, which is another list, containing everything but the head. This goes on down the list until we
get to the empty list, or Nil:

1 scala > val b = List(7,2,4)
2 b: List[Int] = List(7, 2, 4)
3

4 scala > b.head
5 res0: Int = 7
6

7 scala > b.tail
8 res1: List[Int] = List(2, 4)
9

10 scala > b.tail.head
11 res2: Int = 2
12

13 scala > b.tail.tail
14 res3: List[Int] = List (4)
15

16 scala > b.tail.tail.tail
17 res4: List[Int] = List()

Scala also supports sets, which are unordered collections:

1 scala > val a = Set(1,2,3,4)
2 a: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)
3

4 scala > a+5
5 res0: scala.collection.immutable.Set[Int] = Set(5, 3, 1, 4, 2)
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6

7 scala > a-3
8 res1: scala.collection.immutable.Set[Int] = Set(1, 2, 4)
9

10 scala > a-8
11 res2: scala.collection.immutable.Set[Int] = Set(1, 2, 3, 4)
12

13 scala > a ++ Set(1,2,10)
14 res3: scala.collection.immutable.Set[Int] = Set(10, 3, 1, 4, 2)
15

16 scala > a -- Set(1,2,3,4)
17 res4: scala.collection.immutable.Set[Int] = Set()
18

19 scala > a ** Set(4,5,6)
20 res5: scala.collection.immutable.Set[Int] = Set(4)
21

22 scala > Set(1,2,3) == Set(1,3,2)
23 res6: Boolean = true
24

25 scala > List(1,2,3) == List(1,3,2)
26 res7: Boolean = false
27

28 scala > a.contains (3)
29 res8: Boolean = true

And maps, which are unordered correspondences between keys and values:

1 scala > val b = Map(1 -> "one", 12 -> "twelve", 122 -> "one hundred
twenty -two")

2 b: scala.collection.immutable.Map[Int ,java.lang.String] = Map(1 ->
one , 12 -> twelve , 122 -> one hundred twenty -two)

3

4 scala > b(12)
5 res0: java.lang.String = twelve
6

7 scala > b(4)
8 java.util.NoSuchElementException: key not found: 4
9 at scala.collection.Map$class.default(Map.scala :169)

10 at scala.collection.immutable.Map3.default(Map3.scala :22)
11 at scala.collection.Map$class.apply(Map.scala :80)
12 at scala.collection.immutable.Map3.apply(Map3.scala :22)
13 at .<init >(<console >:6)
14 at .<clinit >(<console >)
15 at RequestResult$.<init >(<console >:3)
16 at RequestResult$.<clinit ...
17

18 scala > (b + (4 -> "four"))(4)
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19 res2: java.lang.String = four

Scala has a special type, called Any. Every type inherits from Any; accordingly, a list of Anys can
contain objects of any type:

1 scala > List(1, 2, "three")
2 res0: List[Any] = List(1, 2, three)

Another special type, called Unit, has only one object, called (). Unit is used as the return type
of a function that isn’t meant to provide any information by its return value, kind of like void in
C-like languages. For example, the function println that we encountered before is of type Unit.

1.3 Functions

You can define functions in Scala like you can in imperative languages, but there are important
differences. In many imperative languages (including C, Java, and Python) functions output values
using the keyword return. But since Scala is a functional language, returning values is by far the
most important thing that a function can do. Accordingly, you specify what a function returns just
by writing the return value by itself:

1 scala > def add1(x: Int): Int = x + 1
2 add1: (Int)Int
3

4 scala > add1 (3)
5 res0: Int = 4

There are a couple things to notice about the definition of add1 here. First, the syntax is rather
different from the syntax for defining functions in most C-like languages, including in Java. The
equal sign in particular is mandatory, and easy to forget. The second thing to notice is the colons
and the types. The “x: Int” means that the variable x has type Int (this is what would be written
Int x or something in statically typed C-like languages) and the “: Int” outside the parentheses
gives the return type of the function.

(Scala makes a distinction between functions and methods, and the definition of add1 here is
technically a method. We won’t be going deeply enough into Scala to care about the difference,
but feel free to ask if you’d like to know more about this.)

These are called type annotations. You actually could have been using them after any expres-
sion but most of the time Scala’s type inference system will figure things out for you. But there’s
nothing syntactically wrong about being explicit, or even redundant, with type annotations. For
example, these lines all act exactly the same:

1 val s = "Hello"
2 val s: String = "Hello"
3 val s = "Hello": String
4 val s:String = ("Hello": String): String
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Type annotations for the parameters to a function, however, are mandatory. The annotation
for the return type isn’t, i.e., you could omit the second “: Int” in the definition of add1 above.

It’s customary to introduce functional programming languages by showing how to define the
factorial function in them. Since Scala is a hybrid, we’re going to define the factorial in a few
different ways and compare them. The first will be the imperative way:

1 def fact(n: Int) =
2 {
3 var r = 1
4 for (i <- 1 to n)
5 r *= i
6 r
7 }

This is full of functional no-nos like mutable state and functions that do more than compute a
return value, but since Scala is not purely functional, it’s relatively easy (and sometimes desirable)
to write functions this way. Note the use of curly braces to define a block of code, and the fact that
the return value appears alone on the last line.

A more purely functional way to write this function is to use recursion:

1 def fact(n: Int): Int =
2 if (n == 0)
3 1
4 else
5 n * fact(n - 1)

Notice that, although it’s split up into several lines to make it easier to read, the stuff after the
equal sign consists of just one expression. Also, since the factorial function given here is defined
in terms of itself, Scala requires an annotation for the return type.

One of the things that makes functional programming special is that they allow you to use
functions in the same way that you use other objects. For example, lists in Scala have a method
called map that takes a function as a parameter and returns the list you get by applying the function
to everything in the list:

1 scala > List(0,1,2,3,4) map fact
2 res0: List[Int] = List(1, 1, 2, 6, 24)

To facilitate programming in this style, Scala makes it easy to define anonymous functions,
functions that are defined without being assigned a name. For example:

1 scala > List(0,1,2,3,4) map (x => x*x)
2 res0: List[Int] = List(0, 1, 4, 9, 16)

The expression “x => x*x” refers to a function that takes a parameter called x and returns its
square. If you only need to use each parameter once, there’s an even shorter syntax:
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1 scala > List(0,1,2,3,4) map (_ + 2)
2 res0: List[Int] = List(2, 3, 4, 5, 6)

Each _ in the expression refers to a parameter to a function, and the underscores are bound to
the parameters to the function in the order that they appear. For example:

1 scala > val f: (Int , Int) => Int = _ - 2 * _
2 f: (Int , Int) => Int = <function >
3

4 scala > f(10, 4)
5 res0: Int = 2

(You might notice the difference between the type of f here and the type of fact above: this
type has an arrow in it and the other one doesn’t. This is related to the difference between methods
and functions mentioned earlier — the one with the arrow is the type of a function, not a method
— and again, you should ask if you want to know more about this.)

There’s an even shorter way to write the factorial function in Scala, and it gives us an excuse
to introduce some more language features that demonstrate some of the power of functional
programming:

1 def fact(n: Int) = (1 /: (2 to n))(_ * _)

The operator /: is called the folding operator, and it deserves some explanation. The folding
operator needs three things: a list, an initial value, and a function for combining values. What it
does is, starting with the initial value, applies the function to the current value and the first entry
in the list, getting a new value, then moves on to the rest of the list. So here, we’ll start with 1, then
apply the multiplication function to 1 and the first element of the list, giving us 2. Then we’ll apply
it again to 2 and the next element of the list — which is 3 — and get 6. This will continue until we
run out the list.

Also, notice the syntax of /:. It takes an initial value and a list and returns a function. This
method then takes a function, which it uses to fold the list into the value. This process — having a
function which returns another function that takes more parameters — is called currying, and it’s
something that will become more important with some of the other languages we’ll encounter
later.

Recursion is also the usual functional way to write functions that operate on lists. For example,
consider the following two functions that each compute the length of a list:

1 def length1(a: List[Any]) =
2 {
3 var r = 0
4 a foreach (_ => r += 1)
5 r
6 }
7

8 def length2(a: List[Any]): Int =
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9 if (a == Nil)
10 0
11 else
12 1 + length2(a.tail)

The imperative version has some new things in it which are worth commenting on. The
foreach method of lists is just like map, except that it expects a function that returns unit. Things
like += that modify variables return Unit (note that this is different from many C-like languages)
so the function used there does the trick. Since we don’t care about the parameter to the function,
we can refer to it with the placeholder _.

The second version doesn’t use any temporary variables or mutable state, and once we move
on to more functional programming languages it’s going to be the only game in town. The tail of a
list has length one less than the list itself, so we can use this fact to recursively compute the length.
We just need the base case: the length of the empty list is zero.

We can also build lists recursively using the list construction operator. For example:

1 scala > def squaresbetween(x: Int , y: Int): List[Int] =
2 | {
3 | if (x > y)
4 | Nil
5 | else
6 | (x*x) :: squaresbetween(x + 1, y)
7 | }
8 squaresbetween: (Int ,Int)List[Int]
9

10 scala > squaresbetween (4,9)
11 res0: List[Int] = List(16, 25, 36, 49, 64, 81)

(The curly braces are only necessary to make the interactive interpreter not stop reading input
after line 4. The function body is still just one expression long.)

1.4 Classes and Objects

A Java program is a collection of classes, and almost everything in Java is thought of as an object, a
collection of data together with functions (called methods in Java) for manipulating that data. A
class is a type of object, which specifies that sorts of data and methods an object is supposed to
have, and objects are created by instantiating classes.

Scala operates on a similar philosophy, and it also allows you to define classes and objects in
a way that is similar to, but also different from, the way Java does. Consider the following class
definition:

1 class Rational(n: Int , d: Int)
2 {
3 def this(x: Int) = this(x, 1)
4

5 private def gcd(x: Int , y: Int): Int =
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6 if (y == 0)
7 x
8 else
9 gcd(y, x % y)

10

11 private val num = n / gcd(n, d)
12 private val den = d / gcd(n, d)
13

14 def toDouble: Double = num.toDouble / den.toDouble
15 override def toString: String = num + "/" + den
16

17 def +(rhs: Rational) = new Rational(num * rhs.den + rhs.num * den
, den * rhs.den)

18 def -(rhs: Rational) = new Rational(num * rhs.den - rhs.num * den
, den * rhs.den)

19 def *(rhs: Rational) = new Rational(num * rhs.num , den * rhs.den)
20 def /(rhs: Rational) = new Rational(num * rhs.den , den * rhs.num)
21 }

There are a lot of things going on here, so let’s take them one at a time. This defines a class
called Rational, designed to represent rational numbers. The parameters after the name of the
class make it look kind of like a function, and in fact it is: when we define the class, we also define
a constructor, a function for creating objects of this class. In this case, our constructor takes two
integers n and d and produces the rational number n/d , so the expression new Rational(3,5)
evaluates to the rational number 3/5.

On line 3, we define another constructor which takes just one number and returns the corre-
sponding Rational. We define it in terms of the other constructor. (In both Java and Scala, this is
a keyword that refers to the specific instance of the class which is running the method in which it
appears.)

Starting on line 5 we have a private method, and starting on line 11 we have some private
data members. Methods and data that are private are meant to be used only by the class itself
and not by any other piece of code that uses the class. Trying to invoke the method gcd on some
object of type Rational would cause an error, as would trying to access the member num or den.
Having private elements in a class feeds in to a philosophy of object-oriented programming called
encapsulation, the idea of which is to hide details about the implementation of a class from the
end user so that they can be changed without affecting how the class is used.

Next, starting on line 14, we have two public methods. You can tell that they’re public because
the word private doesn’t appear next to them, and you can tell that they’re methods because
they’re declared with the word def. Scala methods don’t have to take parameters; unlike in some
C-like languages, you don’t need to follow the name by an empty pair of parentheses. If you define
a method in this way, it is also invoked without any parentheses. Note that this is indistinguishable
from accessing a data member.

Notice that toString starts with the word override. In the Java world, every class inherits
from the class Object. (If you’re not familiar with this concept, inheritance is a way for objects of
one class to also be considered objects of another class. For example, if we had classes Person
and Student, it would make sense for Student to inherit from Person so that, for example, a list
of Persons would also be allowed to contain Students. Scala supports inheritance, but we won’t
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be exploring it very deeply.) Object already defines a method called toString, so since we’re
defining it again, we have to tell Scala that we’re overriding the old definition. Unlike in Java, this
is mandatory.

Finally, we define four public methods for doing arithmetic, which are relatively straightfor-
ward. When the new Rationals are created by these methods, they’re going to be put in lowest
terms by the constructor, so there’s no need to do it in the method itself.

We can use this class in the interpreter, and it works how you might expect. (Note: If you want
to use the interactive interpreter’s :load functionality, you should move the opening curly brace
onto the same line as the class definition so it doesn’t think the class definition has ended before
that line.)

1 scala > val r = new Rational (10, 45)
2 r: Rational = 2/9
3

4 scala > r + new Rational(1, 2)
5 res0: Rational = 13/18
6

7 scala > new Rational(5, 6) * new Rational (2)
8 res1: Rational = 5/3
9

10 scala > r.toDouble
11 res2: Double = 0.2222222222222222

Notice how the toString method is automatically used by the interactive interpreter to decide
how to display the output.

There’s one more thing to point out here. The methods + and * here are invoked like they’re
operators, without a dot or parentheses or anything. You might think this is because they share
names with predefined operators, but this actually has nothing to do with it. In Scala, any method
that only takes one parameter can be invoked this way — in fact, we did it already with the map
and foreach operators above. In Scala, even numbers are objects, and the operations we perform
on them are actually method calls. That is, the expression 1+2 is actually read as (1).+(2), that is,
the result of invoking the method + on the object 1 with the parameter 2.



Language 2 Clojure 13

2 Clojure
Just like Scala, Clojure is built on top of the Java Virtual Machine. When writing code in Clojure,
you will have access to all of Java’s standard libraries. But Clojure is designed to be much more in
the functional programming vein. We will first focus on Clojure as a standalone language, and
then say something about how to access Java libraries from within Clojure.

Clojure is considered to be a dialect of Lisp, which was one of the original languages influenced
by lambda calculus. Hence most of Clojure’s basic syntax is very similar to Lisp syntax. This
makes Clojure a great transition into the world of functional programming: one of the most
salient features of Clojure’s syntax is its utter simpliciy. Most of the code is written in so-called
s-expressions, which are parenthesized (and possibly nested) lists.

2.1 Arithmetic, Strings, and Functions

Clojure code can be compiled, but we will start with the Clojure interpreter, which is also knows as
the REPL or read-eval-print loop. You can open the Clojure REPL by typing clojure in a terminal.
To exit the REPL, hit Ctrl-D or (System/exit 0).

You can now type expressions in the REPL to have them evaluated.

1 user=> (+ 1 1)
2 2
3

4 user=> (+ 1 2 3)
5 6
6

7 user=> (+ (+ 1 2) 3)
8 6
9

10 user=> (+ 1 1.0)
11 2.0

The first thing to observe in these examples is the s-expression notation for evaluating functions.
As seen in the third example, s-expressions can be nested. Even though types aren’t specified
while defining or executing a function, there are some internal types which redirect to Java types.
Moreover, there is some type coercion, as seen in this example.

1 user=> (type (+ 1 1))
2 java.lang.Integer
3

4 user=> (type (+ 1 1.0))
5 java.lang.Double

An s-expression consists of a sequence of sub-expressions, each of which is itself an s-expression.
To evaluate a function, we write an s-expression whose first element is the name of the function
and the remaining elements are the arguments. Usually, the arguments to functions are evaluated
in an unspecified order. Let us now look at some expressions involving strings.
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1 user=> "hello , world!"
2 "hello , world!"
3

4 user=> (+ "hello " "world !")
5 java.lang.ClassCastException: java.lang.String cannot be cast to java

.lang.Number (NO_SOURCE_FILE :0)
6

7 user=> (str "hello " "world !")
8 "hello world!"
9

10 user=> (str 1 "2" (+ 3 4))
11 "127"

Hence we see that the + function only works on numeric values, and concatenation of strings is
done by str. Moreover, we see some Java lurking in the background: the error message shows up
is a Java exception.

Just like Scala, Clojure is not a purely functional language. Hence it supports some functions
with side effects.

1 user=> (println "hello , world !")
2 hello , world!
3 nil

In this example, the side effect is that the string “hello, world!” gets printed to the REPL. The
function output is represented as nil, which corresponds to Null in Java.

Now we will explore how to define new variables and functions in Clojure. Variables are defined
using the def special form, whose output is the curently defined variable. Functions are defined
using the defn form, whose output is the currently defined function. Here are some examples.

1 user=> (def x 5)
2 #’user/x
3

4 user=> (def y 10)
5 #’user/y
6

7 user=> (defn add -x-and -y [] (+ x y))
8 #’user/add -x-and -y
9

10 user=> add -x-and -y
11 #<user$add_x_and_y__1 user$add_x_and_y__1@baa466 >
12

13 user=> (add -x-and -y)
14 15
15

16 user=> (def x 10)
17 #’user/x
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18

19 user=> (add -x-and -y)
20 20

Observe that after defining the function add-x-and-y, we can refer to the function by its name.
Hence the output of the expression add-x-and-y is the function itself. Since it is a function with no
arguments, there are no arguments specified in the def statement (indicated by the empty square
brackets). Also observe that if we redefine x to be 10, then the output of the function changes to
the new correct value, because the function is evaluated again after being called. We can define
functions with arguments as follows.

Notice that the variables inside the function definition are just names for the arguments of the
function and have nothing to do with the global variables x and y that we defined earlier. However,
as in the third example if x is the only argument specified and I refer to y, then in this case y refers
to the global variable already defined.

1 user=> (defn square [x] (* x x))
2 #’user/square
3

4 user=> (square 2)
5 4
6

7 user=> (defn my-multiply [x y] (* x y))
8 #’user/my-multiply
9

10 user=> (my-multiply 4 6)
11 24
12

13 user=> (defn add -to-y [x] (+ x y))
14 #’user/add -to-y
15

16 user=> (add -to-y 3)
17 13

There may be multiple expressions inside a function definition. The value of the evaluated function
is then the value of the last expression. There is also an optional documentation string that can be
specified just after the name of the string, which can be accessed later using doc.

If no expressions are given in the definition, the function evaluates to nil. Here are some
examples.

1 user=> (defn square "Squares the input." [x] (* x x))
2 #’user/square
3

4 user=> (doc square)
5 -------------------------
6 user/square
7 ([x])
8 Squares the input.
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9 nil
10

11 user=> (square 3)
12 9
13

14 user=> (defn foo "Redefines y to be x, then squares x." [x] (def y x)
(* x x))

15 #’user/foo
16

17 user=> (foo 19)
18 361
19

20 user=> y
21 19
22

23 user=> (defn bar [a])
24 #’user/bar
25

26 user=> (bar)
27 java.lang.IllegalArgumentException: Wrong number of args passed to:

user$bar (NO_SOURCE_FILE :0)
28

29 user=> (bar 3)
30 nil

It is also possible to define anonymous functions in Clojure. One way to do this is the fn form.
These anonymous functions can be used within other expressions. A shorter way is to use the %
syntax, which is best learned via examples.

1 user=> ((fn [x] (even? x)) 4)
2 true
3 user=> ((fn [x y] (- x y)) 5 9)
4 -4
5 user=> (#( even? %) 4)
6 true
7 user=> (#(- %1 %2) 5 9)
8 -4

2.2 Control Structures and Data Structures

Let us explore the control structures in Clojure. First, the booleans are true and false. As we saw
earlier, there is also a “nothing” value called nil. Normally if there is a sequence of expressions,
say as the arguments of a function or in a def statement, then they are evaluated in an unspecified
order. To evaluate expressions in the order given, use the do special form.
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This is especially useful in conditionals. The syntax of an if statement is (if <condition> <
then> <else>). If <condition> is evaluates to something other than false or nil, then the output
is the <then> expression. Otherwise, the output is the <else> expression.

1 user=> (if true 5 6)
2 5
3

4 user=> (if false 5 6)
5 6
6

7 user=> (if nil 5 6)
8 6
9

10 user=> (if (< 1 2)
11 (do (print "five = ") 5)
12 (do (print "six = ") 6))
13 five = 5
14

15 user=> (if (> 1 2)
16 (do (print "five = ") 5)
17 (do (print "six = ") 6))
18 six = 6

If only one branch is needed, the when form can be used.

1 user=> (when (< 1 3) 5)
2 5
3

4 user=> (when (> 1 3) 5)
5 nil

So far we have seen lists in Clojure. Other common data structures are: vector, set, and map. We
will talk about lists, vectors, and sets.

A list is an ordered collection of items, which is usually accessed top-down. We have seen lists
as the format in which variables are defined and functions are evaluated. A list is constructed by
the syntax (list <items>). Given a list lst, there are functions to return the first object, namely
(first lst), and the remaining list, namely (rest lst).

1 user=> (def lst (list 1 2 3 4))
2 #’user/lst
3

4 user=> lst
5 (1 2 3 4)
6

7 user=> (first lst)
8 1
9
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10 user=> (rest lst)
11 (2 3 4)

A new item can be attached in front of an existing list using the function cons. Two lists can be
appended using concat.

1 user=> (cons 1 nil)
2 (1)
3

4 user=> (cons 1 ’(2))
5 (1 2)
6

7 user=> (concat ’(1 2 3) ’("a" "b" "c"))
8 (1 2 3 "a" "b" "c")

A vector is also an ordered collection of items, but vectors are like arrays, and accessing
elements of a vector is faster than accessing elements of a list. Hence vectors are commonly used
as a data structure. Moreover, many functions that work on lists also work on vectors. Here are
some examples.

1 user=> (def vect1 (vector 1 2 3 4))
2 #’user/vect1
3

4 user=> vect1
5 [1 2 3 4]
6

7 user=> (def vect2 [5 6 7 8])
8 #’user/vect2
9

10 user=> vect2
11 [5 6 7 8]
12

13 user=> (nth vect1 0)
14 1
15

16 user=> (nth vect1 4)
17 java.lang.ArrayIndexOutOfBoundsException: 4 (NO_SOURCE_FILE :0)
18

19 user=> (first vect2)
20 5
21

22 user=> (last vect2)
23 8
24

25 user=> (cons 1 [1 2 3])
26 (1 1 2 3)
27
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28 user=> (concat [1 2] [2 2 1])
29 (1 2 2 2 1)
30

31 user=> (count [1 2])
32 2

There is a function called count which finds the length of a collection. Similarly there is also a
function called conj which adds an element to a collection. But it behaves differently on different
types of collections, as seen below.

1 user=> (conj [1 2 3] 4)
2 [1 2 3 4]
3

4 user=> (conj ’(1 2 3) 4)
5 (4 1 2 3)

Set is another data structure. Here is how to construct sets.

1 user=> (set ’(1 1 2 3 4))
2 #{1 2 3 4}
3

4 user=> (set ["a" "b" 1 1 "b" "c" "a"])
5 #{1 "a" "b" "c"}

An exciting feature of Clojure is its ability to create lazy lists. These are lists whose elements
don’t get evaluated until absolutely necessary. In particular, the list can be infinitely long. Here is a
basic example.

1 user=> (def my-lst (repeat 1))
2 #’user/my-lst
3

4 user=> (take 5 my-lst)
5 (1 1 1 1 1)
6

7 user=> (take 10 my-lst)
8 (1 1 1 1 1 1 1 1 1 1)

To create functions that use lazy lists, the lazy-seq macro is used. We can create some fancy
functions this way.

1 user=> (def ones (lazy -seq (cons 1 ones)))
2 #’user/ones
3

4 user=> (take 10 ones)
5 (1 1 1 1 1 1 1 1 1 1)
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6

7 user=> (def numbers
8 (lazy -seq
9 (cons 1 (map (fn [x] (+ x 1)) numbers))))

10 #’user/numbers
11

12 user=> (take 5 numbers)
13 (1 2 3 4 5)

2.3 Recursion and iteration

Clojure supports recursive functions. Here is an example.

1 user=> (defn factorial [n]
2 (if (= n 0)
3 1
4 (* n (factorial (- n 1)))))
5 #’user/factorial
6

7 user=> (factorial 0)
8 1
9

10 user=> (factorial 5)
11 120

However, this is not very efficient, because if n is large, then the successive values n, n-1, etc. need
to be placed on the evaluation stack in order, which may result in a stack overflow exception. A
more efficient way to write the same function recursively is the loop and recur combination. This
function is still recursive, but consumes constant stack space.

1 user=> (defn better -factorial [n]
2 (loop [num n, prod 1]
3 (if (zero? num)
4 prod
5 (recur (dec num) (* prod num)))))
6 #’user/better -factorial

Let us go through this definition step-by-step. The loop special form defines the local variables
num and prod, which have initial values set to n and 1 respectively. We will take the input and
successively decrement it, keeping track of the product accumulated so far.

The variable prod keeps track of the product accummulated so far. The variable num keeps track
of the current number. If we are ever at a stage when num is zero, then we return the total product
accumulated. If num is non-zero, then we decrement it and multiply prod by num. Then we send
the new values of num and prod to the body under the loop statement, by using the construction
recur.
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2.4 Data structure processing

In this section we will briefly describe some built-in functions to process data structures in Clojure.
The filter function takes in a predicate and a sequence, and outputs a list consisting only of
those elements of the original sequence that satisfy the predicate.

1 user=> (filter #(even? %) ’(1 2 3 4 5 6))
2 (2 4 6)
3

4 user=> (filter #(even? %) [1 2 3 4 5 6])
5 (2 4 6)

The map function takes in a function f of k arguments and a k sequences. It outputs the sequence
obtained by applying f to each tuple of corresponding elements of the k sequences. If the k
sequences have different lengths, it outputs the shorter of the two.

1 user=> (map #(* % %) ’(1 2 3))
2 (1 4 9)
3 user=> (map #(* %1 %2) ’(1 2 3) ’(3 4 5 6))
4 (3 8 15)

The reduce function takes in a function f of two arguments, an optional start value, and a sequence.
It applies f to the start value and the first element of the sequence, then f to the result and the
second element of the list, and so on, and outputs the final result. If no start value is given, reduce
starts by applying f to the first two elements of the sequence.

1 user=> (reduce #(+ %1 %2) 1 ’(1 2 3))
2 7
3

4 user=> (reduce #(+ %1 %2) [1 2 3])
5 6
6

7 user=> (reduce #(if (> %1 %2) %1 %2) [1 3 2])
8 3
9

10 user=> (reduce #(if (> %1 %2) %1 %2) ’(1 3 2))
11 3
12

13 user=> (reduce #(if (> %1 %2) %2 %1) [1 3 2])
14 1

2.5 Interacting with Java

As mentioned briefly before, Clojure can access Java libraries, and Clojure code can be compiled
into Java bytecode to be able to run on a Java Virtual Machine. Here are some simple examples of
how Java libraries can be accessed to run on the Clojure REPL.
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1 user=> (java.lang.System/currentTimeMillis)
2 1342406906630
3

4 user=> (java.lang.System/nanoTime)
5 127762484559483
6

7 user=> (java.lang.Math/PI)
8 3.141592653589793
9

10 user=> (java.lang.Math/log java.lang.Math/E)
11 1.0
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3 Haskell
Haskell is a lot like the languages we’ve already examined, but more so. Scala and Clojure have
functional components, but Haskell is purely functional: no functions are allowed to have any
side-effects, ever. Later on, we’ll catch a glimpse of monads, which are how Haskell deals with this
seemingly absurd restriction, and we’ll see that it’s not nearly as strange as it sounds. In particular,
this restriction allows the language to fully implement lazy evaluation. Since no function can do
anything except compute a value to return, there’s no need to evaluate any expression until you
actually need the value.

Haskell is, in some sense, the ultimate functional programming language, for better or for
worse. Laziness, along with some other features like a wonderfully designed type system with good
type inference, pattern matching, and concise syntax give a Haskell user the strong impression
that things have all been done “the right way.” Still, the restrictions that have to be put into place
to allow this to happen can sometimes make some problems harder to solve, and the price you
have to pay for lazy evaluation is that it’s not always clear when or how many times functions are
going to be executed.

3.1 Types and Data Structures

The compiler we’re using for this class is called GHC, and like the previous two, there is an
interactive interpreter. It’s called GHCi, and you can get to it by typing ghci at a terminal.

Just as before, we can make GHCi evaluate expressions for us. You’ll notice that Haskell’s syntax
is more normal than Clojure’s, and more concise than Scala’s.

1 Prelude > 2 + 3 * 4
2 14
3 Prelude > "this is " ++ "a string"
4 "this is a string"
5 Prelude > head [5, 2, 7, 8]
6 5

The expression [5, 2, 7, 8] is a list, and head is a function that does the same thing as
the method by the same name that we encountered in Scala. Note that functions in Haskell are
applied just by putting the arguments after the name of the function.

Unlike Scala (and to some extent Clojure) Haskell isn’t built on the object-oriented program-
ming paradigm; there are no methods to be seen here. Functions that operate on data structures
are just functions, like head, and they’re not invoked through any given object. But, like Scala,
Haskell has a static type system, meaning that Haskell needs to know the type of every expression
at compile time, and this prevents you from applying functions in situations where it makes no
sense. (The object-oriented goal of encapsulation is handled, to some extent, by Haskell’s module
system, which you should investigate if you’re interested.)

Also like Scala, Haskell has type inference, which means that most of time you don’t need to
explicitly label the types of expressions. You can ask for the type of an expression in GHCi by
typing :t before the expression:

1 Prelude > :t True
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2 True :: Bool
3 Prelude > :t (1 == 2) || (7 < 9)
4 (1 == 2) || (7 < 9) :: Bool
5 Prelude > :t ’c’
6 ’c’ :: Char
7 Prelude > :t [True , False , True]
8 [True , False , True] :: [Bool]
9 Prelude > :t "string"

10 "string" :: [Char]

Notice that the type of a list of x’s is just written [x], and that a string is the same thing as a list
of Chars. Trying this on numbers gives us a very different-looking response from GHCi:

1 Prelude > :t 7
2 7 :: (Num t) => t
3 Prelude > :t 2.72
4 2.72 :: (Fractional t) => t

Num and Fractional are examples of what Haskell calls type classes. A type class is a collection
of types that can all be used in the same set of functions. For example, everything in the type
class Num can be added, subtracted and multiplied, along with some other things. Fractional is a
subclass of Num, meaning that every type in the Fractional class is also in the Num class. In addition
to everything other Num types can do, Fractional types can also be divided using the / operator.
(There is also a built-in integer division function called div.)

The types that were assigned in the code listing above contain type variables. The type inference
system produces types like this when it’s unable to completely deduce the type of an expression.
The type (Num t) => t should be read as something like “For any type t in the class Num, this could
have type t.” We can see type variables popping up in even more complicated types:

1 Prelude > :t [1, 2, 3]
2 [1, 2, 3] :: (Num t) => [t]
3 Prelude > :t []
4 [] :: [a]
5 Prelude > :t head
6 head :: [a] -> a

In the last two examples, we see that type variables need not be assigned to a class at all: the
head function works on any sort of list, no matter what type is in it, and it produces whatever type
was in the list.

Lists are composed of a head and a tail, just as in Scala, and there is a list construction operator
called : that takes an element and a list and returns the list whose head and tail are the parameters:

1 Prelude > 3:[6,2,8]
2 [3,6,2,8]
3 Prelude > []:[[1 ,2] ,[3 ,4]]
4 [[] ,[1 ,2] ,[3 ,4]]
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5 Prelude > 4:2:9:2:[]
6 [4,2,9,2]
7 Prelude > []:[]
8 [[]]

Note that the roles of the symbols : and :: are switched from Scala.
Haskell also has tuples that work just like tuples in Scala:

1 Prelude > :t (’a’, 3, [1, 2])
2 (’a’, 3, [1, 2]) :: (Num t, Num t1) => (Char , t, [t1])

Tuples belong to different types depending on how many things are in them and what type
each thing has.

3.2 Functions

You can declare variables in GHCi using let:

1 Prelude > let a = 3
2 Prelude > a + 1
3 4

If you put code in another file and want to load it in GHCi, you can use :l filename and it will
run all the code in the file. If you do this, though, you shouldn’t precede declarations with let:

1 --In test.hs
2 a = 6
3

4 --In GHCi
5 Prelude > :l test
6 [1 of 1] Compiling Main ( test.hs , interpreted )
7 Ok, modules loaded: Main.
8 *Main > a
9 6

We can define functions using a nearly identical syntax:

1 Prelude > let f x y = x + 2 * y
2 Prelude > f 7 1
3 9

Again, if you’re loading code from a file, you should omit the let. Recursive functions work
just like you would expect:
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1 Prelude > let fact n = if n == 0 then 1 else n * fact (n-1)
2 Prelude > fact 6
3 720

In the definition of f above, you can see that just as the name of the function is separated from
its first parameter by a space, so is the first parameter from the second. This is a reflection of the
fact that all functions in Haskell are curried. Currying a function of two arguments means turning
it into a function of one argument that returns a function to take the other argument. That is, we
can do things like this:

1 Prelude > let g x y = x + y
2 Prelude > g 2 3
3 5
4 Prelude > let part = g 7
5 Prelude > part 3
6 10

When we write “g 7” we’ve plugged in 7 for x, but we don’t have a value yet for y. So what we
get isn’t a number, it’s a function which need the value of y and then returns the number. The 7 is
sort of “suspended” inside part, waiting for the second parameter so it can be added to it.

We can see evidence of currying in the types of the functions:

1 Prelude > :t g
2 g :: (Num a) => a -> a -> a

That type could also be written (Num a) => a -> (a -> a). That is, g is a function that takes a
numeric type a, and returns a function that takes a’s to a’s. So the expression g 2 3 is secretly read
as (g 2) 3: we’re applying the function g 2 to the parameter 3.

Anonymous functions can be defined using relatively concise notation. Note the presence of
currying here too:

1 Prelude > (\x -> [x]) 3
2 [3]
3 Prelude > let f = (\a -> \b -> b - a) 9
4 Prelude > f 3
5 -6

Haskell has some syntax for treating operators in this way too. Operators in Haskell, like +,
<, &&, and :, are actually functions just like g, just with a different syntax. We can treat them as
functions by surrounding them with parentheses:

1 Prelude > :t (+)
2 (+) :: (Num a) => a -> a -> a
3 Prelude > (+) 3 5
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4 8

We can partially apply an operator by sticking a parameter on one side of it inside the paren-
theses:

1 Prelude > let f = (<3)
2 Prelude > f 5
3 False
4 Prelude > f 1
5 True
6 Prelude > let g = (9-)
7 Prelude > g 4
8 5
9 Prelude > g 10

10 -1
11 Prelude > (((+7) 2)*) 8
12 72

As in Scala, there are a lot of built-in functions for interacting with lists, many of which take
functions as parameters. We’ll demonstrate some here; for more information, you should check
the documentation online. It’s a good exercise to try implementing these yourself, especially after
you’ve read the next section.

1 Prelude > length [4, 8, 9, 0]
2 4
3 Prelude > [0,2,4,6,8] !! 3
4 6
5 Prelude > take 5 [2,3,7,5,1,0,9,3,7,4,8]
6 [2,3,7,5,1]
7 Prelude > map (\x -> x + 1) [4, 5, 6]
8 [5,6,7]
9 Prelude > let even x = x ‘mod ‘ 2 == 0

10 Prelude > filter even [1..20]
11 [2,4,6,8,10,12,14,16,18,20]
12 Prelude > foldl (+) 1 [2,4,6]
13 13
14 Prelude > any even [3,6,9,11]
15 True
16 Prelude > all even [3,6,9,11]
17 False

3.3 Useful Features for Function Definitions

One of Haskell’s most powerful features is pattern matching. It allows you to define a function for
values that look a certain way. For example, we can write a function that adds up all the numbers
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in a list like this (in a file):

1 sum [] = 0
2 sum (x:xs) = x + sum xs

The first line defines the value of the function on the empty list, and the second line defines
the value of the function on any list that looks like x:xs, that is, any list that has a head and a tail.
Since every list either has a head and a tail or is empty, we’ve defined sum on every list. Note the
placement of parentheses: in Haskell, function application binds tighter than everything else, so
we need to put parentheses around the pattern x:xs, but not around the function application sum
xs.

We can use case expressions to do pattern matching outside of a function definition:

1 --In test.hs
2 n = case [1, 2, 3] of
3 [] -> 0
4 x:_ -> x
5

6 --In GHCi
7 Prelude > :l test
8 [1 of 1] Compiling Main ( test.hs , interpreted )
9 Ok, modules loaded: Main.

10 *Main > n
11 1

(The pattern _ is used when we want to indicate that something belongs there but we don’t
care to give it a name.)

We can use guards to augment patterns:

1 --In test.hs
2 abs ’ 0 = 0
3 abs ’ x
4 | x > 0 = x
5 | x < 0 = -x
6

7 --In GHCi
8 Prelude > :l test
9 [1 of 1] Compiling Main ( test.hs , interpreted )

10 Ok, modules loaded: Main.
11 *Main > abs ’ 5
12 5
13 *Main > abs ’ 0
14 0
15 *Main > abs ’ (-3)
16 3
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The guard “| x > 0” means that the definition that follows applies only in the case that x is
greater than zero, and similarly for the next one. Notice that the first pattern isn’t strictly necessary;
we could have included it by changing one of the later lines. (This function is called abs’ because
there’s already a built-in function called abs. We have to put -3 in parentheses because otherwise
Haskell thinks we’re subtracting 3 from abs’.)

The special guard otherwise matches anything not caught by the other guards:

1 --In test.hs
2 describeList xs
3 | length xs == 0 = "empty"
4 | length xs < 3 = "kinda small"
5 | length xs < 10 = "medium -sized"
6 | otherwise = "really big"
7

8 --In GHCi
9 Prelude > :l test

10 [1 of 1] Compiling Main ( test.hs , interpreted )
11 Ok, modules loaded: Main.
12 *Main > describeList [4,2,10,9]
13 "medium -sized"
14 *Main > describeList [1..20]
15 "really big"

It’s often helpful to be able to define temporary variables and functions for later use. Haskell
offers two ways to do this, called let and where. They look and act very similar:

1 --In test.hs
2 silly x = [y, f x, y, f x] where
3 y = 2 * x
4 f a = 3 * a
5

6 silly ’ x =
7 let
8 y = 2 * x
9 f a = 3 * a

10 in
11 [y, f x, y, f x]
12

13 --In GHCi
14 *Main > silly 3
15 [6,9,6,9]
16 *Main > silly ’ 3
17 [6,9,6,9]

The main difference between these, aside from where the definitions go, is that let is an
expression and where is just something that goes onto the end of a definition. That is, we can do
this with let:
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1 Prelude > 1 + (let x = 2 in x * 3)
2 7

and there’s no corresponding construction with where.

3.4 Datatypes

Haskell allows you to define your own data structures to use as types. These constructions, called
datatypes, have some things in common with classes in object-oriented languages, but with some
differences. They tend to be a lot smaller, and they don’t have any methods; the things that
would be methods in a language like Scala are instead implemented as functions that take the
corresponding object as a parameter.

You can define a datatype with a data declaration:

1 --In a file
2 data Foo = Bar | Baz Int Int | Qux [Foo]
3

4 --In GHCi
5 *Main > :t Bar
6 Bar :: Foo
7 *Main > :t Baz 3 5
8 Baz 3 5 :: Foo
9 *Main > :t Baz

10 Baz :: Int -> Int -> Foo
11 *Main > :t Qux [Qux [Bar , Baz 2 3], Baz 0 9]
12 Qux [Qux [Bar , Baz 2 3], Baz 0 9] :: Foo

The data line declares a type called Foo. Objects of type Foo can be constructed in one of three
ways: Bar is a constant of type Foo, Baz is a function that turns two integers into a Foo, and Qux is a
function that turns a list of Foos into a Foo.

You can do pattern matching on datatypes just like you can on lists:

1 --In a file
2 describe Bar = "Bar"
3 describe (Baz m n) = "Baz " ++ show m ++ " " ++ show n
4 describe (Qux xs) = "Qux ( " ++ descriptions xs ++ ")" where
5 descriptions [] = ""
6 descriptions (f:fs) = describe f ++ " " ++ descriptions fs
7

8 --In GHCi
9 *Main > describe (Baz 2 9)

10 "Baz 2 9"
11 *Main > describe (Qux [Qux[Bar , Baz 2 3], Baz 0 9])
12 "Qux ( Qux ( Bar Baz 2 3 ) Baz 0 9 )"
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Datatypes can take other types as parameters. For example, we could define a datatype for
binary trees by typing:

1 data BinaryTree a = Leaf a | Branch (BinaryTree a) (BinaryTree a)

Here a binary tree is either a leaf, in which case it’s labelled with an object of whatever type a is,
or it’s a branch, in which case it has two binary trees under it, one going to the left and one going
to the right. In fact, lists can be thought of as a datatype themselves. That is, except for the special
bracket syntax, it’s as if lists we defined like this:

1 data List a = Empty | Colon a (List a)

The pattern matching we used on lists should then be thought of as being of the same type as
the what we used with describe above.

All the variables we’ve been using up to now have begun with a lower-case letter, but the names
of the functions used to construct types (called constructor functions) start with upper-case letters.
This is actually not just a convention; it’s a restriction that’s imposed by the compiler.

3.5 Lazy Evaluation

One of the most entertaining features of Haskell is its lazy evaluation. This means that, in the
process of evaluating some expression, Haskell will try as long as possible to avoid carrying out a
computation it might not end up having to do. This can lead to a lot of efficiency gains. On the
more obvious side, in an expression of the form:

1 if (condition that’s false) then
2 really hard computation
3 else
4 really easy computation

the hard computation doesn’t have to be performed because the condition is false. This type
of thing is actually done in most programming languages that have this type of control structure.
On the slightly less obvious side, in code like:

1 l = [some really long list]
2 m = map (some function) l
3 ...
4 some code that requires us to know head m

the function doesn’t actually need to be applied to everything in the list, so Haskell won’t
bother, even in the declaration of m. Then later, when we need to know head m, Haskell will finally
actually grab the head of l, apply the function to it, and give the result.

Notice that this is only possible because of the restriction that functions can’t have side-effects.
If applying the function to the elements of l caused some side-effect to happen, the programmer
almost certainly would have expected that to happen when m is defined, and not at some arbitrary
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time hundreds of lines later. If functions in Haskell could have side-effects, then lazy evaluation
would have crazy and unpredictable results.

Another advantage of lazy evaluation is that it allows us to have data structures that contain
or refer to themselves! For example, Haskell supports infinite lists, which can be defined in a
remarkably simple way:

1 Prelude > let naturals = 0 : map (+1) naturals
2 Prelude > head naturals
3 0
4 Prelude > naturals !! 7
5 7
6 Prelude > take 10 naturals
7 [0,1,2,3,4,5,6,7,8,9]
8 Prelude > take 10 (filter even naturals)
9 [0,2,4,6,8,10,12,14,16,18]

If I actually asked GHCi to print out naturals, it would never stop, but as long as I only ask for
things that can be guaranteed to terminate in a finite amount of time, lazy evaluation allows us to
only pay attention to the part of the list we care about.

Incidentally, the list we called naturals can also be speicified in a simpler way. We’ve used
Haskell’s range construction a few times already: for example, [1..6] evaluates to the list [1, 2,
3, 4, 5, 6]. We can also leave off the second number to get an infinite list, so naturals could
have been defined as simply [0..].

As a slightly more complicated example, we’ll build the sequence of factorials as an infinite list.
To do this, we’ll use the built-in function zipWith, which is defined like this:

1 zipWith _ [] _ = []
2 zipWith _ _ [] = []
3 zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

This function takes a function and two lists and produces the list that you get by applying the
function to the pairs of elements of the two lists. For example:

1 Prelude > zipWith (+) [1, 2, 3] [6, 7, 8]
2 [7,9,11]

Then we can define our factorials like this:

1 Prelude > let facts = 1 : zipWith (*) facts [1..]
2 Prelude > take 8 facts
3 [1 ,1 ,2 ,6 ,24 ,120 ,720 ,5040]

It’s a good exercise to study this example until you’re convinced you understand it.
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3.6 Monads

Like the other programming languages we’ve seen, Haskell has some basic functions to deal with
input and output. For example, the putStrLn function takes a string and prints it, like the println
function from Scala and Clojure:

1 Prelude > putStrLn "Hello , side -effects !"
2 Hello , side -effects!

There’s another function, called getLine, which waits for a string from the user and then
returns it. You can string these together using the following syntax:

1 Prelude > do x <- getLine; putStrLn ("What you said was: " ++ x ++
"!")

2 I thought Haskell wasn ’t supposed to have side -effects
3 What you said was: I thought Haskell wasn ’t supposed to have side -

effects!

At this point you should be objecting: Haskell wasn’t supposed to have side-effects, but here
we seem to be writing functions with side-effects. But have no fear, everything is fine. Even though
these lines look like instructions, they’re actually expressions, just expressions of a type we haven’t
encountered yet:

1 Prelude > :t putStrLn
2 putStrLn :: String -> IO ()
3 Prelude > :t getLine
4 getLine :: IO String

IO is an example of a monad. An object of type IO a is a representation of a sequence of
input/output (“I/O”) operations that, in the end, returns an a. So putStrLn takes a string and
returns a sequence of I/O operations that return nothing; and getLine is a sequence of I/O
operations that returns a string.

So the do syntax above isn’t actually a sequence of instructions at all. It’s an expression which
evaluates to an IO object, and when the interpreter is asked to evaluate it, it just performs the
corresponding sequence of operations.

A monad may be thought of as a container that is easy to get into, but not necessarily possible
to get out of. A monadic type m a is then any type that is encapsulated in the container m, which
is a monad. Computations on a monadic type m a can be performed just like computations on
the type a, but there is a catch. To perform any computation, you must enter the container m,
perform a computation within the container, and then exit the container, the output being another
monadic type m b for the same monad m.

We’ll get used to monads with a simpler example, called Maybe. A monad is any datatype that
belongs to the Monad type class. Any type in the Monad type must satisfy certain axioms, and we
will illustrate these first with the help of the Maybe monad. The datatype Maybe is defined like this:

1 data Maybe a = Just a | Nothing
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It is meant to be a container that represents the result of a computation that might produce an
a or might fail to produce anything. For example, the built-in function find (which lives in the
module Data.List) returns a Maybe:

1 Prelude > import Data.List
2 Prelude Data.List > :t find
3 find :: (a -> Bool) -> [a] -> Maybe a
4 Prelude Data.List > find (<4) [5, 2, 0, 9]
5 Just 2
6 Prelude Data.List > find (<4) [5, 12, 10, 9]
7 Nothing

Let us talk about the axioms that the datatype Maybe satisfies, that make it a monad.

1. There is a function return :: a -> (Maybe a) that inserts any element of type a into the
Maybe container, by sending any input x to Just x.

2. There is a operator >>= (pronounced ‘bind’), which takes in an input of type Maybe a and
a function f :: a -> Maybe b, and returns an output of type Maybe b by “applying” f to
the input. This is not literally possible, because the input may be Nothing. In this case, the
output is simply Nothing. If the input is Just x, the output is Just f(x).

For example, what if you had a computation that depended on the result of find? You could
wrap everything in a sequence of case expressions, but this would get cumbersome very
quickly. Instead we can just use >>= as follows.

1 Prelude Data.List > (find (>2) [3, 2, 1]) >>= (\x -> Just (x + 2))
2 Just 5
3 Prelude Data.List > (find (>5) [3, 2, 1]) >>= (\x -> Just (x + 2))
4 Nothing

3. On any input x, the output of (return x) >>= Just is Just x. In general for a monadic type
m a and a constructor k :: a -> m a, we must have (return x)>>= k = k x.

4. The result of the expression (Just x)>>= return is Just x, and the result of Nothing >>=
return is Nothing. So binding return keeps the input unchanged.

5. Finally, the bind operation is associative in a sense that we will illustrate with the help of
an example: the output of (Just x)>>= (\y -> (f y >>= g)) is the same as the output
((Just x)>>= f)>>= g.

There are two more functions that are optionally part of the Monad type class, namely (>>) and
fail. You can read about these in the documentation.

The do syntax lets us represent bind in a slightly more readable way. The example find (> 2)
[3,2,1] >>= Just (x + 2) could be rewritten as follows:
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1 do x <- find (>2) [3, 2, 1]; return (x + 2)

In other words, we try to find a number in [3, 2, 1] that’s bigger than 2, store it in x, and then
return x + 2. When you’re typing these in a separate file you can use line breaks instead of
semicolons, and as the number of things being strung together gets longer the benefits of the do
syntax become apparent:

1 nnn --Version 1
2 (find (>2) [3, 2, 1]) >>= (\x ->
3 (find (>x) [4, 5, 6]) >>= (\y ->
4 Just (x + y)))
5

6 --Version 2
7 do
8 x <- find (>2) [3, 2, 1]
9 y <- find (>x) [4, 5, 6]

10 return x + y

Now that we know the basic structure of a monad, we return to the IO monad. Our examples
from before work exactly the same way. The following two expressions mean exactly the same
thing:

1 -- Version 1
2 putStr "Enter a string: " >>= (\_ ->
3 getLine >>= (\s ->
4 return (length s) >>= (\n ->
5 putStrLn ("Your string has " ++ show n ++ " characters ."))))
6

7 --Version 2
8 do
9 putStr "Enter a string: "

10 s <- getLine
11 n <- return (length s)
12 putStrLn "Your string has " ++ show n ++ " characters ."

And it’s clear which one is easier to understand. (Note that, since putStr is an IO (), we don’t
need to care about its return value, and the do syntax has a shortcut for this.)

Using do and the IO monad (along with other monads for different imperative-style tasks)
it’s possible to write Haskell code that looks a lot like it belongs in an imperative language. Still,
because monads are objects just like any other object, we can maintain the no-side-effects
restriction that makes Haskell’s lazy evaluation work so well.
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4 Erlang
Erlang has a lot of things in common with the languages we’ve examined so far — it’s a functional
language with lists, pattern matching, and first-class functions. As far as these features are
concerned, the only new thing to understand is the syntax. Because of this, we’ll go over these
aspects of the language very quickly.

The reason we’re examining it has to do with its support for concurrency, that is, multiple
processes that run at the same time. We’ll find that, unlike in a lot of other languages, Erlang
manages to make concurrency pretty simple. Let’s dive in.

4.1 Erlang Syntax Rundown

You can get an interactive interpreter by typing erl from a terminal. The first strange thing you’ll
notice is that every expression has to end with a period:

1 1> 7.
2 7
3 2> 2+3.
4 5

Erlang has numbers, strings, lists (denoted by square brackets), and tuples (denoted by curly
braces). The list construction operator (the thing corresponding to :: in Scala, cons in Clojure,
and : in Haskell) is written with a pipe (|) where both arguments are in square brackets:

1 1> [1, 2, 3].
2 [1,2,3]
3 2> {4, [2, 2], [3, 4, 4]}.
4 {4,[2,2],[3,4,4]}
5 3> [4|[2 ,2 ,0]].
6 [4,2,2,0]
7 4> [6 ,3|[5 ,0 ,9]].
8 [6,3,5,0,9]
9 5> [[1 ,2]|[3 ,4]].

10 [[1,2],3,4]

The first and third expressions are lists, and the second is a tuple containing a number and
two lists in order. Notice that the pipe syntax lets you put more than one element at the front of
the list, and that lists can hold different types of values. As in Haskell, strings are secretly lists.

You can assign values to variables using a very simple syntax. The thing to remember here is
that variables have to begin with capital letters, the opposite of the restriction we faced in Haskell:

1 1> Num1 = 2.
2 2
3 2> X = 8.
4 8
5 3> X + Num1.
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6 10

Identifiers that begin with lower-case letters denote atoms, fixed values that act kind of like
strings that can’t be taken apart. Two atoms are the same if and only if they are denoted by the
same string:

1 1> apple.
2 apple
3 2> X = banana.
4 banana
5 3> X == apple.
6 false
7 4> X == banana.
8 true

To define functions we’re going to put some code in a file and load it in the interpreter. We’ll
put the following code into a file called test.erl. (The lines that start with a % are comments.)

1 % This is in test.erl
2 -module(test).
3 -export ([fact /1]).
4

5 fact (0) -> 1;
6 fact(N) -> N * fact(N-1).
7

8 % Everything from here on is in the interactive interpreter.
9 1> c(test).

10 {ok,test}
11 2> test:fact (8).
12 40320

The first line defines the name of the module that will hold all the code we’re writing, and the
second line provides a list of the functions we’ll export, that is, make available to the user of the
module. The /1 after the name of the function gives the number of parameters that the function
takes; functions aren’t curried by default in Erlang. Pay attention to the semicolon separating the
different parts of the function definition.

When we compile the code in test.erl by typing c(test), we can execute our function by
typing the module name, a colon, and then the name of the function. You can’t define functions
using this syntax in the interactive interpreter, but you can replicate it using the anonymous
function syntax (which we will talk about) and the case expression (which we won’t).

Erlang also has an if, but it works more like guards in Haskell than the if from other languages
we’ve looked at:

1 1> X = 3.
2 3
3 2> if
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4 2> X == 0 -> zero;
5 2> X > 0 -> positive;
6 2> true -> negative
7 2> end.
8 positive

The conditions are separated from each other with semicolons, and Erlang evaluates the
expression by going through the conditions one by one until finding one that evaluates to true.
This is why sticking true at the end allows you to catch any cases that don’t get caught by anything
higher; it acts like otherwise in Haskell’s guards. Pay attention to the syntax here; it’s easy to screw
up.

Like the other languages we’ve seen, there are functions which take and return other functions:

1 1> lists:map(fun(X) -> X*X end , [0,1,2,3,4,5,6]).
2 [0,1,4,9,16,25,36]
3 2> lists:map(fun test:fact/1, [0,1,2,3,4,5,6]).
4 [1,1,2,6,24,120,720]
5 3> F = fun(X) -> -X end.
6 #Fun <erl_eval .6.13229925 >
7 4> lists:map(F, [0,1,2,3,4,5,6]).
8 [0,-1,-2,-3,-4,-5,-6]

You can define anonymous functions this way using fun; don’t forget the end. Also note the
funny syntax for referring to compiled functions. The lists module has a lot of familiar functions
for dealing with lists, like filter/2 and foldl/3. Documentation can be found on the Internet.

You can use pattern matching to write functions that go through lists, and the list construction
syntax to build lists recursively in functions. This works just like it does in the languages we’ve
already examined, so we won’t go into much detail about it here.

4.2 Concurrency

In this section we’ll scratch the surface of how Erlang does concurrency. There are three pieces,
and they’re all very simple: one creates a new process, one sends a message to a process, and one
receives a message. The first is the built-in spawn function, which takes a function as its parameter
and starts a separate process to run it. It returns a process ID, a handle that can be used to refer to
the process later on. (The definition of the function other/0 will be discussed in a moment.)

1 1> c(test).
2 {ok,test}
3 2> P = spawn(fun test:other /0).
4 <0.40.0>

The spawn function can also take a list as a third parameter which contains any parameters
you want passed to the function you’re creating a process for. Then we can send messages to the
other thread using the ! operator:
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1 3> P ! message.
2 Received a message that I wasn ’t ready for. Trying again.
3 message
4 4> P ! something.
5 Received message: something! Stopping.
6 something
7 5> P ! something.
8 something

(The messages look like they’re being repeated because P ! x returns x, and the interpreter
is displaying the return value.) So what happened here is that we sent the process the message
message, then the message something, and once it received the second message, the process
ended. Let’s look at how the function other/0 is implemented:

1 -module(test).
2 -export ([other /0]).
3

4 other() ->
5 receive
6 something -> io:format (" Received message: something! Stopping .~n

");
7

8 something_else -> io:format (" Received message: something_else!
Stopping .~n");

9

10 _ -> io:format (" Received a message that I wasn ’t ready for.
Trying again.~n"),

11 other()
12 end.

Processes can deal with messages using a receive block, which waits until a message is
received by the process before evaluating anything. The syntax for receive looks a little like the
definition of a function. The message can be any Erlang value at all, and the part before the -> is a
pattern that’s matched against the message.

The function io:format takes a string and displays it; the ñ is a line break. You can string
expressions together using ,.

The messages, as we mentioned before, can be any Erlang expression at all, including some-
thing rather complicated. A common practice is to use this to include the process ID of the sender
so that the receiving process can send a message back. Here’s a trivial example:

1 % In test.erl
2 -module(test).
3 -export ([ oneadder /0]).
4

5 oneadder () ->
6 receive
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7 {Source , X} -> Source ! X + 1
8 end.
9

10 % In the interpreter.
11 1> c(test).
12 {ok,test}
13 2> Adder = spawn(fun test:oneadder /0).
14 <0.40.0>
15 3> Adder ! {self(), 5}.
16 {<0.33.0>,5}
17 4> receive X -> X end.
18 6

We spawn a process for the function oneadder and send it the number 5 together with the
sender’s process ID, which is the output of the built-in function self. This way, the function can
send a message back to the original process.

Whenever a process sends a message to another process, Erlang adds the message to the
receiver’s message queue, and ordered list of messages that have to be received. The receiver
doesn’t wait for the sender to read the message, so in this last example, the spawned process ends
right after it sends its message to Source. The message queue allows multiple messages to pile up
before being dealt with; they’ll just be received in the order they were sent:

1 % In test.erl
2 -module(test).
3 -export ([ onetwoadder /0, sender /0]).
4

5 onetwoadder () ->
6 receive
7 {Source , X} ->
8 Source ! (X + 1),
9 Source ! (X + 2)

10 end.
11

12 getnum () ->
13 receive
14 X -> io:format (" Received ~p.~n", [X])
15 end.
16

17 sender () ->
18 P = spawn(fun test:onetwoadder /0),
19 P ! {self(), 4},
20 getnum (),
21 getnum ().
22

23 % In the interpreter
24 1> c(test).
25 {ok,test}
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26 2> test:sender ().
27 Received 5.
28 Received 6.
29 ok

It’s a good exercise to think about what would have happened if there were one more call to
getnum in the body of sender, or if there were one fewer.

The thing that makes Erlang’s concurrency so much easier to use than that of other languages
is its commitment to the idea that there shouldn’t be any mutable state. Whenever two different
processes have access to the same mutable data, there are always conflicts about which process is
able to change what when, and these conflicts are resolved through the use of “locks,” which grant
exclusive access to the data for as long as one process needs it. This in turn can create “deadlocks,”
where two process are both waiting for each other to allow them to proceed. By doing away with
mutable state altogether — that is, by programming in a functional style — we can neatly avoid all
of these problems.
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5 Prolog
Prolog is a logic programming language. This means that constraint satisfaction is a basic feature
of prolog. We will see how this works in practice by looking at examples.

You can start prolog by typing prolog. You can exit the interpreter by typing halt.. You
will have to write the code in a separate file, and then load the file into the prompt by typing
consult(’<filename>’)..

5.1 Facts and Rules

Let us create a sample file that contains some facts. A fact defines an n-ary relation. Relations are
specified in our file one after the other. For example:

1 man(harry).
2 man(draco).
3 man(ron).
4 woman(hermione).
5 woman(ginny).

We have defined some 2-ary relations, as follows:

1 brother(fred , george).
2 sister(ginny , ron).
3 sister(ginny , fred).
4 sister(ginny , george).

After consulting the file in the interpreter, we can ask for facts. Evaluating each true fact outputs
true. Moreover, we can also query relations by putting in variables for some of the arguments.
(Remember that variables start with a capital letter, just like in Erlang.)

Here are some examples.

1 ?- brother(fred ,X).
2 X = george.
3 ?- parent(X,fred), man(X).
4 X = arthur.
5 ?- parent(X,fred), woman(X).
6 X = molly.
7 ?- brother(ginny ,X).
8 false.

Observe that prolog doesn’t assign X to the value that satisfies the constraint. It simply tells you
that some value satisfies the constraint. If nothing satisfies the constraint, it outputs false.

As you can see, we can try to satisfy multiple constraints by simply listing them in order. What
happens if there is more than one solution to a constraint? The interpreter outputs a possible
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solution and waits for the user to either accept it or move to the next one. (Accept by pressing the
return key and move to the next one by pressing the semicolon key.) If the user moves on, then
prolog backtracks and tries to choose a different value.

1 ?- parent(X,fred).
2 X = arthur ;
3 X = molly.
4 ?- woman(X).
5 X = hermione ;
6 X = ginny ;
7 X = molly.

So far we only had a set of facts to work with. Now we define rules, which tell the interpreter
how to combine the facts to get new facts. This is how relations are constructed. For example, we
can write the following.

1 father(X,Y) :- parent(X,Y), man(X).
2 mother(X,Y) :- parent(X,Y), woman(X).

Like in Haskell and Erlang, the underscore _ is a wildcard that matches anything.

1 ?- father(arthur ,_).
2 true

Prolog has extensive pattern matching, just like Haskell and Erlang. There is a special operator,
written = and pronounced unification, which carries out pattern matching without evaluating the
arguments. Here are some examples.

1 ?- X = 3.
2 X = 3.
3 ?- a = a.
4 true.
5 ?- a = b.
6 false.
7 ?- X = a.
8 X = a.
9 ?- a = X.

10 X = a.
11 ?- X = 3+4.
12 X = 3+4.

Observe that atoms like a are only equal to themselves, and don’t match any other atom. Also
observe that = does not assign values to variables, since X did not get assigned to 3 after the first
expression was evaluated.

Also observe the peculiarity that X = 3+4. outputs X = 3+4., and not X=7.. This is because the
unification operator does not evaluate its arguments. Pattern matching can be more complicated:
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1 ?- a(Y,Z) = a(3,4).
2 Y = 3,
3 Z = 4.

So why is unification useful if there is no assignment? In a composite prolog statement, prolog
remembers the unification rules and then applies them. Here is an example.

1 ?- X=Y, a(Z) = a(Y), X=2.
2 X = 2,
3 Y = 2,
4 Z = 2.

There is a special predicate called is, which behaves similar to the unification operator, but it
evaluates its arguments. This will finally allow us to do arithmetic calculations in the interpreter.

1 ?- X is 1+2.
2 X = 3.
3

4 ?- X is (3 + 4)*9.
5 X = 63.
6

7 ?- X = 3 + ’four ’.
8 X = 3+four.
9

10 ?- X is 3 + ’four ’.
11 ERROR: is/2: Arithmetic: ‘four/0’ is not a function

Recall from the examples that prolog tries to find all possible matches to a rule query, one at a
time. Hence there is a stack that keeps track of the matchings and constraints so far. As we match
new variables, we push to the stack with the values of these variables. At the end, if we reject the
match, then prolog backtracks by popping the stack and choosing a different option if possible.

Sometimes we would like prolog to stop trying to find more values of a variable. To prune
the search tree at a point, the ! operator (pronounced cut) is used. If we use a cut after an
expression, then the first matched value will be bound to all variables for the duration of the
current computation. Here is an example.

1 ?- sister(ginny ,X), !.
2 X = ron.
3

4 ?- sister(ginny ,X).
5 X = ron ;
6 X = fred ;
7 X = george.
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In the first statement, the matcher stopped at the first match, while in the second statement, the
matcher was willing to backtrack even after finding one match.

5.2 Functions, recursion, lists, etc.

Let us now try to define a “normal” function, such as the factorial. At this point we should say
something about functions in prolog. Remember that the basic objects in prolog are relations.
A function is a special kind of relation, and is treated no differently than a relation. Let us try to
define a function called add1 that adds 1 to its argument. Normally it would be defined by saying
something to the effect of add1 X = X + 1. In prolog however, add1 would be a 2-ary relation,
where add1(X,Y) is true if and only if Y =X +1. The definition is then as follows.

1 add1(X,Y) :- Y is (X+1).

Let us look at a more complicated example, which is written recursively.

1 factorial (0,1).
2 factorial(A,B) :-
3 A > 0,
4 C is A-1,
5 factorial(C,D),
6 B is A*D.

Observe that we had to introduce the local assignment of C to A-1. Typing A-1 directly into the
factorial does not work. In this version of factorial, the stack size grows linearly with the input. But
we can write an iterative factorial which will make use of a tail call optimization, as follows.

1 ifact(X,Y) :- ifact -helper(X,1,Y).
2 ifact -helper(0,Y,Y).
3 ifact -helper(X,T,Y) :-
4 C is X-1,
5 D is X*T,
6 ifact -helper(C,D,Y).

For example, we have the following.

1 ?- ifact(4,X).
2 X = 24
3 ?- ifact (5 ,120).
4 true
5 ?- ifact(5,X).
6 X = 120

Prolog has good support for lists. You can extract the head and tail of a list simply by pattern-
matching.
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1 ?- [X|_] = [1,3,4].
2 X = 1.
3 ?- [_|T] = [1,3,4].
4 T = [3, 4].

Similarly there are rules called append, member, takeout that do the obvious things. There are also
rules called union and intersection.
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