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1 Motivating Measure
• We have an intuitive idea of length/area/volume, and it can be easy to see how it’s supposed

to work in a lot of cases. Questions can come up: how do we know that if we cut up a set
in arbitrary ways, we won’t get wrong answers about volume by adding the pieces? How
do we assign measure to sets like the rationals between 0 and 1, where there are no whole
segments?

• In fact, if you’re not careful, you actually can run into trouble with this concept. We need a
precise definition, called a measure.

• Motivate and enumerate:

– Non-negative

– Intervals have the right size

– Countable additivity

– Translation-invariance

• We can start by declaring that intervals have the right size. Handle 0 and∞ correctly.

• We’ll say measure for this formal thing, and length for the (obviously defined) size of a
interval. The volume of an interval Q is written |Q |.

• Sets that can be written as unions of finitely many intervals should be assigned the obvious
measure.

• Talk about open sets and topology. It seems like any set that’s a countable union of intervals
should be able to be assigned a measure, but we have problems with both existence and
uniqueness of this representation. Talk about compactness and least upper bounds.

2 The Outer Measure
• From now on, we’re one-dimensional. Other stuff might be on the homework.

• Let’s be a little more careful. We won’t try to get at the measure of a set by cutting it up
exactly. Rather we’ll take unions of intervals that approximate it on the outside.

• Define m ∗(S) = infS⊆
⋃

Qi

∑

|Qi |, where the Qi ’s are open intervals.

• Note the following properties:

– Monotonicity. Clear.

– Translation invariance. Clear.

– Intervals have the right outer measure, whether open or closed. On the homework.

– Countable subadditivity. Say E =
⋃

E j . If any E j has infinite measure, we’re done, so
say they don’t. For any ε > 0, cover E j by intervals Q j k of total length m ∗(E j )+ε/2j .
Then we obtain that m ∗(E )≤

∑

m ∗(E j )+ε.
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– m ∗(S) = inf m ∗(U ), where U runs over the open sets containing S. One way is clear.
For the other, cover S with intervals of total volume m ∗(S)+ε. We can surround each
interval with an open interval ε/2j bigger, and there’s our open set.

– If E1 and E2 are a positive distance apart, their outer measures add. On the homework.

– If E can be decomposed into a countable disjoint union of intervals, the measure is
what you’d expect. You can shrink each interval by ε/2j , thereby shrinking the total
length by just ε, but then everything is a positive distance apart. So the outer measures
add, giving that m ∗E ≥ (expected)−ε.

• We can’t, though, assert the general disjoint additivity thing for outer measure. Still, it seems
like this is the definition we want. The solution is to only assign measures to certain sets.

3 Measurability
• How can we make disjoint additivity work out? Given two sets E1 and E2, we want to be able

to slice off the part of the union that belongs to E1 without changing the total measure. That
is, writing A = E1 ∪E2, we want m ∗(A) =m ∗(E1)+m ∗(A \E1). Since E2 could be anything at
all, all we know about A is that it contains E1. Things work out nicer if we don’t even insist
on that, so that we say E is measurable if, for any A at all, m ∗(A) =m ∗(A ∩E )+m ∗(A \E ).

• Note that ≤ is automatic, so we only need to check ≥.

• We have the following properties:

– Complements of measurable sets are measurable. Clear by definition.

– If m ∗(E ) = 0, E is measurable. On the homework.

– Lemma: if E1 and E2 are measurable, so is E1 ∪E2. Since E2 is measureable,

m ∗(A \E1) =m ∗((A \E1)∩E2)+m ∗((A \E1) \E2),

and since A ∩ (E1 ∪E2) = (A ∩E1)∪ (A ∩E2 \E1), we know that

m ∗(A ∩ (E1 ∪E2))≤m ∗(A ∩E1)+m ∗(A ∩E2 \E1).

So we get that

m ∗(A ∩ (E1 ∪E2)+m ∗(A \ (E1 ∪E2)) ≤ m ∗(A ∩E1)+m ∗(A ∩E2 \E1)+m ∗(A ∩ (E1 ∪E2))

= m ∗(A ∩E1)+m ∗(A \E1)

= m ∗A.

– Therefore we get intersections, differences, etc.

– Lemma: if E1, . . . , En are disjoint and measurable, then m ∗
�

A ∩
⋃

E j

�

=
∑

m ∗
�

A ∩E j

�

.
Clear for n = 1, so say it works for n − 1. Then, since A ∩

⋃

E i ∩ En = A ∩ En and

A ∩
⋃

E i \En = A ∩
⋃n−1

E i , we get by the measurability of En that

m ∗
�

A ∩
⋃

E i

�

= m ∗(A ∩En )+m ∗

 

A ∩
n−1
⋃

E i

!

= m ∗(A ∩En )+
n−1
∑

m ∗(A ∩E i )
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by induction.

– Countable unions of measurable sets are measurable. We can assume without loss of
generality that the sets are disjoint. So say Fn =

⋃n
E i . We know it’s measurable and

contained in the big union E , so its complement contains E c . So

m ∗A =m ∗(A ∩ Fn )+m ∗(A \ Fn )≥m ∗(A ∩ Fn )+m ∗(A \E ),

and so we learn from the previous lemma that m ∗(A ∩ Fn ) =
∑n

m ∗(A ∩ E i ), and so,
dropping this in the previous line, we get that m ∗A ≥

∑n
m ∗(A ∩E i )+m ∗(A \E ). But

then we can let n go to infinity, letting us conclude that

m ∗A ≥
∞
∑

m ∗(A ∩E i )+m ∗(A \E )≥m ∗(A ∩E )+m ∗(A \E )

by countable subadditivity.

– We have the disjoint additivity business for measurable sets. We have this for finitely
many things already. So say we have a disjoint sequence of measurable sets. Then we
know that m

�
⋃∞

E i

�

≥m
�
⋃n

E i ) =
∑n

m E i . But then we can let n go to infinity on

the right and conclude that m
�
⋃∞

E i

�

≥
∑∞

m E i .

– The open interval is measurable. This is on the homework.

• This gives us a whole bunch of measurable sets. We can measure anything which can be
written by taking open sets, and taking unions, complements, and intersections countably
many times in any order. These are called Borel sets.

• In fact, all measurable sets are very close to being Borel sets, in a sense that you’ll explore
more fully on the homework.

4 The Vitali Set
• We can put an equivalence relation on the reals by saying two numbers are equivalent if

they differ by a rational.

• Pick a representative from each equivalence class within [0, 1] and call the resulting set V .

• Let q1,q2,q3, . . . run through the rationals in [−1,1]. Then the sets V +qi are all disjoint: if
x ∈V +qi ∩V +qj , then v +qi = v ′+qj , so v and v ′ differ by a rational, and therefore they
must be equal by the construction of V .

• But [0,1] ⊆
⋃

i (V +q + i ) ⊆ [−1,2], so if V had a measure, then by disjoint additivity and
translation-invariance, 1≤

∑∞
i=1 m V ≤ 3, which can’t happen.
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