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Introduction
These notes are meant to accompany a short class on quantum mechanics at Canada/USA
Mathcamp 2016. It might be possible to read through them outside the context of that class, but
that would probably not be the best way to learn the subject for the first time; it will certainly be
harder to follow without the benefit of the in-class discussion. Still, if you’re reading this outside
of Mathcamp and have a question, you can e-mail me at njmford@gmail.com.

I’ll assume that the reader is familiar with a few topics in linear algebra — in particular, we’ll
be using basic ideas like linear independence, spanning, bases, and dimension; eigenvectors
and eigenvalues; and the notion of an inner product on a finite-dimensional C-vector space.
It’s also helpful, but not technically required, if you’ve seen a little bit of classical Newtonian
mechanics, at least up through the definition of momentum. For the material at the end, it
will be necessary to know a small amount of calculus; if you know what a derivative is you’re
probably fine, and if you know what a partial derivative is you’re definitely fine.

1 States and Observables
Any well-defined physical theory should have some notion of “states” and “observables.” A
state is just what it sounds like — some mathematical object that represents the state of the
physical system being modeled. An observable is some physical quantity that can be measured by
someone observing the system. For example, in Newtonian mechanics, the state might consist
of the position and momentum of all the particles under consideration, and an observable
might be something like the distance between two of the particles, or the velocity of one of them
with respect to the center of mass. It should always be possible, given a state, to “measure” an
observable, producing the value the corresponding measurable quantity takes in that state.

1.1 Classical States and Observables

It’s possible to frame Newtonian mechanics in this language. Suppose we’re modeling a system
with a finite number of particles. (It’s also possible to do this for infinite classical systems, like a
continuous rigid body, but it’s more complicated.) As mentioned above, you can form a state
by writing down the position and momentum of each of the particles — since the position and
momentum can each be described by three numbers, such a state for an n-particle system can be
described by a point inR6n . We’ll sometimes call this the phase space of the system. (Sometimes
it’s helpful to only allow the state to live on a subset of the phase space: if, for example, two of
the particles are connected by a rigid rod of a fixed length, then we might only allow those states
in which those particles are the corresponding distance apart.)

A classical observable, then, is just a real-valued function on phase space. Given a point in
phase space and such a function, you can measure the observable just by plugging that point
into the function and get a number.

Many popular descriptions of quantum mechanics say (or at least imply) that quantum
states are what you get by taking this picture and adding in what we’ll call “mixed states,” that
is, a state that somehow combines aspects of multiple pure states. (Sometimes these accounts
will call these “superpositions.”) For example, suppose s and s ′ are two pure states, and f is an
observable which takes the value 1 in state s and 5 in state s ′. If you measure f in the mixed
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state 1
3 s + 2

3 s ′, you should get 1 with probability 1
3 and 5 with probability 2

3 — in particular, when
you measure an observable in a mixed state, the result is not a single, definite number but a
probability distribution on the possible outcomes.

This idea — that you might find your physical system in a mixed state — turns out to not be
nearly weird enough to capture what’s commonly referred to as quantum behavior. It’s certainly
possible and useful to build a physical theory this way, but this theory is not quantum mechanics.
Indeed, this perspective is very useful for doing statistical mechanics; when you’re studying
large-scale physical systems made out of enormous numbers of particles, it’s very natural to
work with mixed states, since there’s no reason to assume you know the state of every particle.

Indeed, if this was all that was going on, a lot of the “quantum paradoxes” that these popular
accounts discuss would not be so mysterious: even if you have a mixed state in front of you, it’s
easy to assume that there is a true pure state that the universe is actually in but that you just don’t
know what it is. Then the fact that measuring observables produces probability distributions
shouldn’t surprise you at all. It’s a direct reflection of your ignorance about the true state, and if
you had more information the uncertainty would go away.

As we’ll see, it’s not possible to do away with the probabilities in quantum mechanics so easily.
But to see why, we have to first understand what we mean by quantum states and quantum
observables. The definitions will seem strange at first; while I can’t promise to make them seem
less strange, I will at least do my best to explain what it is they’re telling you about how quantum
measurement works.

1.2 Quantum States and Observables

We’re ready to talk about where the states live in quantum mechanics. Again, the definitions will
probably look pretty arbitrary, but I’ll tell you all of them first, and then I’ll explain how they’re
usually interpreted.

To every quantum system, we’ll associate a vector space over the complex numbers. We’ll
call this the “state space,” and we’ll often call it H . We’ll also give H a complex inner product.
As a reminder, a complex inner product is a function from H ×H →C satisfying the following
properties. (We’ll write 〈x , y 〉 for the image of the pair (x , y ) under this function.)

• The inner product is linear in its second argument, that is, for vectors x , y , z ∈H and any
α ∈C, we have

〈x , y + z 〉= 〈x , y 〉+ 〈x , z 〉

and
〈x ,αy 〉=α〈x , y 〉.

• The inner product is conjugate symmetric, that is,

〈x , y 〉= 〈y , x 〉,

where the bar denotes the complex conjugate.

• The inner product is positive definite, that is,

〈x , x 〉 ≥ 0,

(in particular it’s a real number) and we get 0 if and only if x = 0.
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(Note that this implies that scalars pull out of the first argument as complex conjugates, that is,
〈αx , y 〉=α〈x , y 〉.)

Our pure states will be the vectors in H of norm 1, that is, the vectors v for which |v | =
p

〈v, v 〉 = 1. (There is also a way to talk about mixed states in this context, but we won’t be
using them here, so we’re not going to talk about it.) In general — and indeed in many physical
applications — H can be infinite-dimensional. This setting is quite a bit more complicated
mathematically, though, and we won’t worry about it until the end of these notes. So until the
last section, we’ll assume that H is finite-dimensional.

There are a couple ways to define quantum observables; the one I’ve picked here is not the
one that most physicists work with, but I’m using it because it requires a little less linear algebra
machinery to define: we’ll simply say that an observable is an orthonormal basis of H .

What happens when you want to measure the value of an observable in some state? Suppose
the system is in the state corresponding to some vector v , and we want to measure an observable
corresponding to the basis v1, . . . , vn . When you perform the measurement, the result is one
of the vi ’s — that is, there are dim H possible results you can see. You get some particular vi

with probability |〈vi , v 〉|2. After the measurement has happened, the state becomes whichever
vi resulted from the measurement.1

We should pause to say a bit about what’s going on here. First, it’s tempting to think of
the state space H as being roughly the same object as the phase space we discussed in the
classical context. After all, they’re both vector spaces with elements that are supposed to stand
for our states. So it’s worth pointing out that this interpretation is very misleading. Indeed, if
H is finite-dimensional, then when I measure any observable there are only dim H different
outcomes I can get. So the coordinates of the vector that represents a state shouldn’t be thought
of as the position or momentum of anything.

Instead, in this finite-dimensional context, we should think of the system as modelling some
object for which any observable can only take on finitely many values. There are physical systems
that behave this way — for example the spin of an electron lives in a two-dimensional space —
but a particle with position and momentum isn’t one of them. It’s possible to model a system
like that with an infinite-dimensional vector space, and we’ll consider that at the very end of
these notes.

For some observable corresponding to the basis v1, . . . , vn , what happens when you measure it
when the state is one of the vi ’s? Since the v ’s form an orthonormal basis, we have that 〈vi , v j 〉= 0
for i 6= j and 〈vi , vi 〉= 1. So we get vi as the result of our measurement with probability 1, and it’s
impossible to see any of the other v . So we see that for each observable, the corresponding basis
consists of states in which that observable has a definite value, and the state doesn’t change as a
result of the measurement.

Let’s look at an example. Say H is C2, with the basis e1 = (1,0) and e2 = (0,1), and with the
standard inner product. That is,

〈a e1+ b e2, c e1+d e2〉= a c + b d .

Let’s consider two states and two observables: the states will be

s1 = e1; s2 =
1
p

2
(e1+ e2)

1A lot can be said about this idea that the measurement changes the state of the particle being measured. If you’d like
to make the fewest assumptions necessary to make predictions about experiments, you can just say that all it means is
that all subsequent measures will have the same result as they would have if the state were represented by the basis
vector you obtained. Like most people who’ve spent a lot of time thinking about these ideas, I certainly have a favorite
interpretation, but I also recognize the existence of intelligent people who have different interpretations from mine, and
while this is definitely an interesting question we won’t spend much more time on it in these notes.
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and the observables will be A, corresponding to the basis

v1 = e1, v2 = e2,

and A′, corresponding to the basis

v ′1 =
1
p

2
(e1+ e2), v ′2 =

1
p

2
(e1− e2).

From our previous discussion, we can see that if we measure A in the state s1 or measure A′

in the state s2, we get the corresponding result with probability 1. What about the other way? If
we measure A in state s2, then we see e1 with probability
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2
(e1+ e2)
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|〈e1, e1+ e2〉|2 =
1

2
·1=

1

2
,

and similarly we also get e2 with probability 1
2 . A similar computation also shows that if we

measure A′ in state s1, each outcome again happens with probability 1
2 .

This example demonstrates something important about quantum states that doesn’t happen
in classical physics: since different observables correspond to different bases, it’s impossible to
have a state in which every observable takes on a definite value. Moreover, this isn’t a question
of “pure states” versus “mixed states”: the same state will behave deterministically with respect
to one observable and nondeterministically with respect to many others. (Indeed, while there is
a notion of mixed states in quantum mechanics, all the states we’ve discussed so far are pure
states.)

Still, you’d be excused for thinking that this description is hiding part of the story: perhaps,
like we mentioned when we discussed statistical mechanics at the beginning of this section,
the probabilities discussed here are merely a reflection of our ignorance of the true, underlying
state of the physical system we’re measuring. There are so-called “hidden-variable theories” of
quantum mechanics, but in the next section we’ll see that there are a lot more limitations to
such a theory than you might think.

Exercises

1. Let s be a state, and say α is a complex number with absolute value 1. Show that the state
αs behaves identically to s when measuring any observable. (Because of this, we often
think of s and αs as representing the same state.)

2. Why do we insist that states only correspond to vectors in H of norm 1? [Hint: what does
the norm of a state have to do with the probabilities we get when we measure an observable
in that state?]

3. Electrons have a propety called spin which behaves in some ways like angular momentum
— in particular, the spin depends on which axis you measure it around — but when you
measure spin around some axis there are only two possible results you can get. (They’re
usually called “up” and “down.”) That is, the spin around a specified axis is an observable,
and when you measure it you always get one of two possible results.

The spin of an electron can be represented by a vector inC2. We’ll write (↑x ) for the state
in which the electron has spin up around the x -axis. There is a basis in which we have:

(↑x ) =
1
p

2
(e1+ e2); (↓x ) =

1
p

2
(e1− e2);
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(↑y ) =
1
p

2
(e1+ i e2); (↓y ) =

1
p

2
(e1− i e2);

(↑z ) = e1; (↓z ) = e2.

(a) Suppose I measure an electron’s spin around the y -axis and find that it’s spin up,
then I measure its spin around the x -axis. What is the probability of getting each
outcome? What if I used the z -axis at the end instead of the x -axis?

(b) What if, instead, I measure the electron’s spin around the y -axis, find it’s spin up, and
then measure its spin around the y -axis again?

(c) The laws of physics don’t change when you apply a rotation, so the relationship
between the spin states for the x , y , and z axes should hold for any choice of three
perpendicular axes. Suppose we pick an axis A in the x y -plane. What does this
rotational symmetry tell us about the relationship between the states (↑A), (↓A), (↑z ),
and (↓z )?

(d) Suppose A is one of the two axes that makes a 45◦ angle with both the x and y axes.
What new information can we conclude about (↑A) and (↓A)?
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2 Evolution and Entanglement

2.1 How Quantum States Evolve

There is a pretty big hole in our description of quantum mechanics so far: we’ve described what
states look like and what it means to measure an observable, but we haven’t described how states
evolve in time. In the last section, we’ll analyze a particular physical system in which we’ll be
able to answer the question in detail, but at this level of generality, the answer is, of course, that
it depends on which system you’re talking about.

But there is one constraint that the evolution of any quantum system will always satisfy.
Recall from the exercises to the previous section that the fact that states correspond to vectors of
norm 1 is what makes the probabilities of the outcomes of a measurement sum to 1. However
a quantum state evolves through time, then, it seems important to preserve the norm of the
corresponding vector.

This is all a way of making the following rule seem a bit more believable: quantum states
evolve in time according to a unitary linear map. Recall that unitarity is the complex version of
orthogonality: a linear map U : H →H is unitary if, for each v, w ∈H , we have

〈U (v ),U (w )〉= 〈v, w 〉.

There is an equivalent condition in terms of matrices: U is a unitary matrix if U U ∗ = 1, where
U ∗ is the conjugate transpose of U , i.e. the matrix you get by taking the transpose and then
conjugating each entry. Unitary maps are precisely the linear maps on H that take vectors of
norm 1 to vectors of norm 1.2

Let’s look at an example. Consider the two-dimensional space H from the previous section,
with the observable A corresponding to e1 and e2 we used before. Suppose there’s some physical
process which acts on states via the matrix

U =
1
p

2

�

1 1
−1 1

�

.

So if our system starts in the state e1, then when this process is done it’s in the state

s =
1
p

2
(e1+ e2).

As we saw before, measuring A in this state will give either e1 or e2 each with probability 1
2 .

A very tempting interpretation of this is that this simply means that what we actually have in
front of us at this point is an object that is either in state e1 or e2, but we just don’t know which.
But you run into trouble with this interpretation when you want to apply U again: you can check
that U takes s to e2, that is, a state in which A has a definite value. If we’re thinking of s as just
representing a state which has some possibility of secretly being e1, then we would conclude
that applying U again should leave some chance of having e1 again. But that’s not what we see:
after applying U to s , it’s become impossible to get e1.

2This, of course, leaves open the question of why time evolution ought to be linear at all. I don’t have as good a reason
for this — and anyway, my reasoning for insisting on preserving the norm is of course predicated on believing the picture
of states and observables laid out in the previous section. If you look for a while, you can find various attempts to justify
the postulates of quantum mechanics on the Internet from more reasonable-sounding assumptions, but I’m not going
to worry too hard about this here.
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This is meant to push us into a different interpretation of these states: we can’t interpret
our state in the way that we thought we were going to — we’ve done something more than
just introduce some probabilities in the way one does in statistical physics. If one insists on
interpreting states in this way, one has to accept the possibility that adding a possible outcome
to a measurement (like adding the possibility of getting e2 to the s example) can make it less likely
to observe some other outcome from a different observation (as happened to the possibility of
getting e1 after applying U the second time).

2.2 Entanglement

We’ll start our discussion of entanglement by exploring how to describe states and observables
for a physical system with more than one particle in it. That is, suppose we have some particle
whose states live in H and another particle whose states live in H ′. What should we use as the
state space for the system consisting of the two particles together?

One way to motivate the answer to this question is to think about what should happen when
we measure some observables corresponding to some properties these particles could have. So
suppose A is an observable corresponding to the basis e1, . . . , en of H , and A′ is an observable
corresponding to the basis e ′1, . . . , e ′m of H ′. If we measure A for our first particle and A′ for our
second particle, we should get some pair of outcomes, ei and e ′j , so this pair needs to give us a
state for our combined system.

That is, our states should live in a new vector space, which we’ll write as H ⊗H ′, which has
an orthonormal basis consisting of all of these “paired up” vectors. We’ll write such a basis vector
ei ⊗ e ′j . That is, this vector describes a state in which, if we measure A for the first particle and A′

for the second, we get the outcomes ei and e ′j respectively. If dim H = n and dim H ′ =m , then
dim(H ⊗H ′) = nm .

There’s one more question to answer here: if we have a state in H ⊗H ′ and I measure
some observable on just one of the particles? As an example, say that H = H ′, and H is two-
dimensional, so a general state looks like

α11e1⊗ e1+α12e1⊗ e2+α21e2⊗ e1+α22e2⊗ e2,

with |α11|2 + |α12|2 + |α21|2 + |α22|2 = 1. When you measure our observable A from before, you
see that that particle is either in state e1 or e2. What does this tell you about the state of the
whole system? If you see e1 from this measurement, all you’ve learned is that the resulting state
ought to belong to the two-dimensional subspace S1 of H ⊗H ′ consisting of vectors of the form
∑

i αi e1⊗ ei — that is, ones where we know the first component is in state e1.
This is all to motivate the following stipulation: when we measure A, we take our state and

project it onto this subspace S1. So if we get e1 from our measurement of A, our state should
become

s1 =
1

p

|α11|2+ |α12|2
(α11e1⊗ e1+α12e1⊗ e2),

and this should happen with probability |α11|2+ |α12|2.
(Why |α11|2+ |α12|2? One way to make this feel more like our other examples is to notice that

our original state can be written as
p

|α11|2+ |α12|2s1+
p

|α21|2+ |α22|2s2,

where s1 ∈ S1 and s2 ∈ S2; s1 is the expression given above, and s2 is the analogous expression
with the roles of e1 and e2 switched. That is, s1 is a state in which measuring A would always
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yield e1 and s2 is in a state where it would yield e2. These square-root factors are exactly the ones
we need to make s1 and s2 have norm 1.)

Note also that this requires a slight extension of our earlier definition of observables: we’d
like to allow an observable that corresponds not just to an orthonormal basis of our state space
but also to a decomposition of the state space into orthogonal subspaces, like our S1 and S2

above. (This is the same as taking an orthonormal basis, but then grouping some sets of vectors
in the basis together and considering the subspaces spanned by the vectors in each group. In
this language, S1 would come from the group {e1⊗ e1, e1⊗ e2} and S2 from {e2⊗ e1, e2⊗ e2}.)

Some states in H ⊗H come from taking two states s and s ′ from H and considering them
together — that is, they describe a system in which the first particle is in state s and the second
is in state s ′. For example, the state e1⊗ e1 we considered before is like this, as is the state

�

1
p

2
(e1+ e2)

�

⊗
�

1
p

2
(e1− e2)

�

=
1

2
(e1⊗ e1− e1⊗ e2+ e2⊗ e1− e2⊗ e2).

States like this are called separable. (In particular, the procedure we used in this last example is
the general way to combine a state from H and a state from H ′ to produce a state from H ⊗H ′:
allowing the ⊗ symbol to distribute over addition in this way is exactly the thing that reproduces
the rules for measurement in H ⊗H ′ we just discussed.)

States that aren’t separable are called entangled. For example, the state

e =
1
p

2
(e1⊗ e1+ e2⊗ e2)

isn’t separable: if we could write it in the form

(αe1+βe2)⊗ (α′e1+β
′e2),

then we get that one ofα orβ ′ has to be 0, which is inconsistent with having a nonzero coefficient
on both e1⊗ e1 and e2⊗ e2.

There is a famous example, called the CHSH game, that illustrates a strange property of
entangled states. Alice and Bob will play a game. Each of them is assigned a separate room
containing a coin and a button, but they have a chance to agree on a strategy before they’re
separated. When they’re ready to play, they’ll go to their appointed rooms and flip the coin. After
that, they’ll have a chance to either press the button or not.

The goal is as follows: they want exactly one of them to press the button if and only if both
coins land heads. (So if at least one coin lands tails, then they want either to both press the
button or both not press the button.) Notice that each player has only four strategies to choose
between (the only choices are what to do if the coin lands heads and what to do if it’s tails) so
there are 16 strategies total. It’s not difficult to check that no matter what they do, they can’t do
better than a 3

4 chance of winning. Furthermore, choosing their strategy randomly can’t help:
this just amounts to randomly choosing one of the 16 possible strategies according to some
probability distribution, and randomly choosing among strategies that can’t win more than 3

4 of
the time can’t result in a strategy that wins more than 3

4 of the time.
But what if Alice and Bob have a pair of particles that they’ve placed into the state e we

discussed above? Then if Alice takes one of the particles and Bob takes the other, they have one
more thing they can do after the coin has been flipped: each of them can choose which basis to
use to measure the particle they have. Let’s see what happens when they do this.

It will be useful to have some notation to talk about the bases they can use. Write {e α1 , e α2 } for
the bases you get by rotating {e1, e2} counter-clockwise by α, so

e α1 = (cosα)e1+ (sinα)e2,
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and
e α2 = (−sinα)e1+ (cosα)e2.

This notation makes it easy to take inner products: we get that

|〈e α1 , e β1 〉|
2 = |〈e α2 , e β2 〉|

2 = cos2(α−β )

and
|〈e α1 , e β2 〉|

2 = |〈e α2 , e β1 〉|
2 = sin2(α−β );

one quick way to see this is to rotate both bases by −β so that one of them is {e1, e2} and the

other is {e α−β1 , e α−β2 }.
Say Alice has the first particle and Bob has the second. If Alice’s coin lands heads, she’ll

measure her particle in the basis {e π/41 , e π/42 }. If she gets tails, she’ll use {e1, e2}. Bob will use

{e −π/81 , e −π/82 } for heads and {e π/81 , e π/82 } for tails. In each case, they’ll press the button if and only
if the measurement resulted in the first basis vector.

You’ll check the following two facts in the exercises:

• If you use one of these rotated bases to construct the state e under discussion, the result is
the same. That is,

1
p

2
(e1⊗ e1+ e2⊗ e2) =

1
p

2
(e α1 ⊗ e α1 + e α2 ⊗ e α2 ).

• As a consequence of this, if Alice measures her particle in some basis {e α1 , e α2 } and sees,
say, e α2 , then the two particles together end up in the state e α2 ⊗ e α2 . In particular, after this
happens, the second particle is in the state e α2 , so if Bob now measures his particle in the

basis {e β1 , e β2 }, the probability that he sees e β1 is |〈e α2 , e β1 〉|2, and likewise for e β2 .

So here are the possible outcomes:

Alice’s coin Bob’s coin P (same) P (different)
H H cos2(3π/8) sin2(3π/8)
H T cos2(π/8) sin2(π/8)
T H cos2(π/8) sin2(π/8)
T T cos2(−π/8) sin2(−π/8)

The winning outcome is “different” in the top row and “same” everywhere else, so in every
case, they have the same probability of winning, namely cos2(π/8) = sin2(3π/8) = 1

4 (2+
p

2)≈
0.8536. Note, in particular, that this beats the upper bound of 3

4 we came up with from before!
It’s worth emphasizing how strange this is: it’s tempting to look at an entangled state and

say that all we’ve done is randomly choose one of e1 or e2 to assign to both particles, but we
don’t know which one. But if that were all that was happening, then Alice and Bob couldn’t have
improved their chances of winning any more than they could with any other random strategy.
Once again, we’re forced to conclude that something much stranger is at work than “classical
physics plus probabilities.”
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Exercises
1. Let

e =
1
p

2
(e1⊗ e1+ e2⊗ e2)

be the state we considered in the final example. Suppose { f1, f2} is a different orthonormal
basis for H , and that we have

f1 =αe1+βe2 f2 = γe1+δe2

with α,β ,γ,δ real. We can form a different entangled state from this basis, say

f =
1
p

2
( f1⊗ f1+ f2⊗ f2).

Show that in fact e = f .

2. Verify the consequence of this mentioned in the section: if Alice measures her particle in
some basis { f1, f2} and sees, say, f2, then the two particles end up in the state f2⊗ f2.

3. Verify that the numbers in the table of outcomes from the CHSH game are correct.

4. In this problem we’ll describe another coordination game like the CHSH game, except that
we’ll use entanglement to win the game all the time instead of just with higher probability
than expected. We’ll make use of the electron spin states discussed in Problem 3 from
Section 1, so you should do that problem before this one.

The game is played as follows. Alice, Bob, and Charlie are allowed to decide on a strategy
and are then sent to separate rooms, each of which has a card and a button. The card has
either a 1 or a 2 on it; after looking at the card, each player can decide to either press the
button or not.

There are only two possibilities that will occur for the distribution of cards. The first is
that one of the cards has a 1 and the other two cards have 2’s. In this case, their goal is for
an even number of players to press their button. (That is, either two of them press it or
nobody does.) The other possibility is that all the cards are 1’s. In this case, their goal is for
an odd number of players to press their button. (So either one of them presses it or they
all do.)

(a) Show that, at least without deploying some fancy trick involving entanglement, there’s
no way for the players to always win this game.

(b) On the other hand, suppose they share three entangled electrons in the state

1
p

2
((↑z )⊗ (↑z )⊗ (↑z ) + (↓z )⊗ (↓z )⊗ (↓z )) .

Show that Alice, Bob, and Charlie can use this to win the game all the time. [Hint:
there’s a way to do it in which each player has exactly the same strategy.]
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3 Statistics

3.1 Observables as Operators and Expected Value

Given a state and an observable, we get a probability distribution on the possible results of
measuring that observable in that state, so we can ask statistical questions about this probability
distribution, things like the expected value or the standard deviation. In this section we’ll develop
the machinery that’s necessary to answer questions like this.

We’ll start with the question about expected value. Suppose we’re measuring an observable
corresponding to the orthonormal basis e1, . . . , en . In order to talk about the expected value of
our measurement, we need to have some numbers attached to each of these outcomes so we
can take their average, so let’s attach some real number λ1 to e1, λ2 to e2, and so on.

Let’s write our state in the same basis, so in the form

s =α1e1+ · · ·+αn en .

The probability of getting any ei is just |αi |2, so the expected value is

n
∑

i=1

λi |αi |2.

Now, suppose A is a diagonal matrix with diagonal entries λ1, . . . ,λn . Then observe that

〈As , s 〉=
∑

i

λiαiαi =
∑

i

λi |αi |2.

That is, we can recover the expected value by taking the inner product of As with s .
This is a much more powerful idea than it might first appear: this inner product doesn’t

depend on the basis that we write As and s in. Any time we have a linear map A : H →H with
an orthonormal basis of eigenvectors e1, . . . , en with real eigenvalues λ1, . . . ,λn , then 〈As , s 〉 is
the expected value of the result of measuring the observable corresponding to that basis, where
we attach the number λi to each basis vector ei .

Let’s do a quick example. Consider the 2×2 matrix

A =

�

0 1
1 0

�

.

This has an orthonormal basis of eigenvectors: f1 =
1p
2
(e1 + e2) with eigenvalue λ1 = 1, and

f2 =
1p
2
(−e1+ e2) with eigenvalue λ2 = −1. Consider the state s = e1. Say we’re measuring s in

the basis f1, f2, and we record a 1 when we get f1 and a −1 when we get f2, Our new result says
we can compute the expected value of this measurement as 〈Ae1, e1〉= 〈e2, e1〉= 0. We can verify
this directly: The probability of getting f1 is then |〈 f1, e1〉|2 = 1

2 , as is the probability of getting f2,
so the overall expected value is 1 · 1

2 + (−1) · 1
2 = 0.

In practice, because it makes it easier to do statistical computations like this one, we often
identify an observable with an operator like this. (Note that the operator contains strictly more
information than the basis: it also records the numbers we’ve attached to each basis vector.)
It turns out that the matrices of the form we want — the ones with an orthonormal basis of
eigenvectors with real eigenvalues — can be identified rather easily:
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Theorem (Spectral Theorem). Take a linear map A : H →H and write its matrix with respect to
some orthonormal basis. Write A∗ for the conjugate transpose of A, that is, the matrix you get by
taking the complex conjugate of every entry in the tranpose of A.

Then A = A∗ if and only if there is an orthnormal basis of eigenvectors of A, each of which has
a real eigenvalue.

Matrices of this form are sometimes called self-adjoint or Hermitian. Having this con-
dition is nice for a couple reasons: First, finding all the eigenvectors of a matrix is hard but
checking whether a matrix is self-adjoint is easy. Second, we’ll see in the next section that this
self-adjointness property is easier to generalize to the infinite-dimensional setting than the
orthonormal basis version of the same condition. In fact, most texts use this as the first definition
of a quantum observable rather than doing what we did.

3.2 Variance and Uncertainty

One of the results from quantum mechanics that’s managed to make it out into the world at large
is something called the “Heisenberg uncertainty principle.” It’s often stated as a fact about the
position and momentum of a particle, but a similar statement can actually be made about any
pair of observables. We’ll derive the general version here, applying it to position and momentum
in the next section.

We saw in the last subsection how to compute the expected value of an observable in a given
state. In order to write down the uncertainty principle, we’ll have to discuss how to compute
another statistical quantity, called the variance from a quantum observable and a state. The
definition of variance comes from probability and statistics — there’s nothing uniquely quantum
about the concept — and it measures how far, on average, the measured value is from the
expected value. Since it turns out to be easier to work with mathematically, the definition of the
variance is given in terms of the square of the difference between the measured value and the
expected value. That is, if X is a random variable with expected value µ, then the variance of X
is the expected value of (X −µ)2.

If we’re measuring an observable A in a state s , then as we saw before the expected value
µ is given by 〈As , s 〉. The observable corresponding to the square of the difference between µ
and the result of measuring A is just (A−µ)2; you can see this by working in the orthonormal
basis where A is diagonal. (In this basis, subtracting µ times the identity and squaring doesn’t
affect the orthonormal basis of eigenvectors, and it has the effect of subtracting µ from each
eigenvalue and squaring the result.) So the variance is given by

〈(A−µ)2s , s 〉.

It’s often convenient to rewrite this as

〈A2s , s 〉−2µ〈As , s 〉+µ2〈s , s 〉;

since µ= 〈As , s 〉 and 〈s , s 〉= 1, this is

〈A2s , s 〉− 〈As , s 〉2.

Now we’re ready to begin deriving our uncertainty principle; we’ll sketch out the proof here,
leaving some details to the exercises.
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Theorem (Uncertainty Principle). Let A and B be observables and let s be a state. We’ll write
[A, B ] = AB −B A; this is called the commutator of A and B . Then if VA and VB are the variances
of A and B respectively, we have

VAVB ≥
1

4
|〈[A, B ]s , s 〉|2.

Proof. If µA and µB are the expected values of A and B in the state s , let’s write Ā = A−µA and
B̄ = B −µB . Note that then VA = 〈Ā2s , s 〉 and similarly for VB .

We’ll look at the quantity
〈(Ā+ i x B̄ )s , (Ā+ i x B̄ )s 〉

where x is any real number. This is ≥ 0, being the inner product of a vector with itself. We can
expand the left side to get

〈Ās , Ās 〉+ x 2〈B̄ s , B̄ s 〉+ i x (〈Ās , B̄ s 〉− 〈B̄ s , Ās 〉)≥ 0.

In particular, even though it isn’t otherwise obvious, the last term is real. (The minus sign on the
last term comes from the fact that the i pulls out of the left half of the inner product as a −i .)

In one of the exercises, you’ll prove that for any observable C and any vectors v, w ∈H , we
have 〈C v, w 〉= 〈v, C w 〉. Using this, we get that

〈B̄ 2s , s 〉x 2− i 〈(ĀB̄ − B̄ Ā)s , s 〉x + 〈Ā2s , s 〉 ≥ 0.

(Again, we get from this that the middle term is real.)
Treat this expression as a quadratic polynomial in x . Since it’s always nonnegative, we see

that its discriminant has to be less than or equal to zero. But this gives us that

(−i 〈[Ā, B̄ ]s , s 〉)2−4〈Ā2s , s 〉〈B̄ 2s , s 〉 ≤ 0.

Since −i 〈[Ā, B̄ ]s , s 〉 is real, the first term is equal to |〈[Ā, B̄ ]s , s 〉|2. You’ll check in the exercises
that [Ā, B̄ ] = [A, B ]; once we know this, we have

|〈[A, B ]s , s 〉|2−4VAVB ≥ 0,

so the proof is complete.

What good is this fact, and what does it have to do with the uncertainty principle you might
have heard of? The content of the uncertainty principle is that it gives a lower bound on the vari-
ances of A and B , so that in a state where one variance is small the other has to be correspondingly
larger, since their product has to end up larger than |〈[A, B ]s , s 〉|2.

As you’ll verify in the exercises, though, there’s a limit to this interpretation in our finite-
dimensional setting: the variance will be zero whenever s is an eigenvector of our observable,
and in this case the theorem doesn’t tell us much of anything about the variance of the other
observable. But we’ll see in the next section that in a lot of interesting cases the commutator
[A, B ] ends up being a scalar, which makes the quantity |〈[A, B ]s , s 〉|2 constant. (In paricular,
we’ll see that the position and momentum of a particle behave this way.) In this case it’s possible
to take the “compensating variances” idea more seriously — it really is the case that the less
variance a state has in position, the more it must have in momentum and vice versa.



Section 3 Statistics 14

Exercises

1. The definition of “self-adjoint” given in most linear algebra texts is the following: we say
that A is self-adjoint if for any vectors v, w ∈H we have 〈Av, w 〉= 〈v, Aw 〉. Show that if A
has an orthonormal basis of eigenvectors with real eigenvalues, then it is self-adjoint in
this sense. (The reverse implication is also true, but requires the Spectral Theorem.)

2. Write down operators to represent the spin of an electron around the x -, y -, and z -axes,
treating spin up as a 1 and spin down as a −1.

3. Prove that, for a state s and an observable A, s has a definite value — that is, an eigenvector
of the matrix for A — if and only if the variance of A in the state s is zero.

4. Verify that the commutator of two matrices doesn’t change when you subtract a constant
from either one. That is, if A and B are matrices and α and β are numbers, then

[A−α, B −β ] = [A, B ].
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4 Infinite-dimensional State Spaces
We’re finally ready to extend the ideas we’ve developed to a setting where it’s possible to talk
about position and momentum. A warning: this section will be less rigorous than the preceding
ones; doing this all carefully would require worrying a great deal about various questions of
convergence, and in my judgment this would only obscure the main ideas.

4.1 Wavefunctions

Let’s meet our first infinite-dimensional state space, which is the one that will let us talk about
positions and momenta of particles. In particular, our states will describe particles living in
a one-dimensional space. The elements of our state space are going to be complex-valued
functions on R. Given such a functionψ, we’ll think of |ψ(x )|2 as giving us something like the
probability that the particle is at x .

Since knowing that the particle is at some position x means that it definitely isn’t at any
other position, we know that states in which the particle has definite position should all be
orthogonal to each other. So the values of the function at different points serve the same role as
the coefficients αi in an expansion like

s =α1s1+α2s2+ · · ·+αn sn ,

it’s just that instead of needing to pick a number αi for each i ∈ {1, 2, . . . , n}, we now need to pick
a numberψ(x ) for each x ∈R.

With this motivation, it shouldn’t be too surprising that we’ll want to define our inner product
by multiplying the values that two different functions take at the same point and integrating —
integrals are, after all, the continuous analogue of sums. That is, we’ll define

〈φ,ψ〉=
∫

φ(x )ψ(x )d x .

The functions that we want to have representing our states are the ones with norm 1, that is, the
functionsψ for which

〈ψ,ψ〉=
∫

|ψ(x )|2d x = 1.

Functions like this will be called normalized.
Right away there are a couple differences between this and the finite-dimensional version.

First, in a finite-dimensional space, it’s always possible to divide any nonzero vector by its norm
to get a vector of norm 1. But it’s not always possible to do this with an arbitrary function: the

norm, which is defined to be
q

∫

|ψ|2, might be infinite! We usually solve this by disallowing
functions for which this is true: we’ll restrict membership in our space H to those functions
whose norm is finite.3

The next difference shows up when we try to identify the states in which the particle has a
definite position. First, let’s identify the linear function Q : H →H that’s supposed to correspond

3There’s one more annoying detail here: the inner product as we’ve defined it isn’t nondegenerate, that is, it’s possible
to have 〈ψ,ψ〉= 0 withoutψ being the zero function. This happens, for example, ifψ(x ) is defined to be 0 unless x = 0,
in which case it’s 1. Normally this is resolved by simply considering two functions f and g to be the same if

∫

| f −g |2 = 0,
so that functionψ just described would be identified with 0; we won’t worry about it any further here.
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to position. Using the metaphor we came up with for interpreting the values of our functions —
that the values of the functions are like the coefficients we get when expanding in an orthonormal
basis — I claim that the most natural choice for Q is to make (Qψ)(x ) = xψ(x ). In the finite-
dimensional case, multiplying some vector v =α1e1+ · · ·+αn en by the matrix A corresponding to
some observable with orthonormal basis e1, . . . , en has the effect of multiplying each coefficient
αi by the eigenvalue λi corresponding to ei . So here we ought to do the same thing: ifψ(x ) is
to serve the same role as the coefficient of a basis vector corresponding to being at position x ,
then we want to multiply it by x when we apply Q .

But what could this basis be? If αq is the function corresponding to a state which is definitely

in position q , then we’d need αq (x ) = 0 for x 6= q , but still
∫

|αq (x )|2d x = 1. It’s pretty easy to see
that there’s no value for αq (q )— which is the only number we have left to pick — that can make
that integral nonzero. So there’s actually no element of H that does what we want. That is, Q
doesn’t have any eigenvectors.

(Physicists often find it convenient to introduce an imaginary function with the two properties
just laid out so that they can write equations the sorts of equations we had in the previous sections
but involving eigenvectors of Q . The eigenvector for q = 0 is called the “Dirac delta function”
and written δ(x ); then αq (x ) =δ(x −q ). It is possible to introduce a mathematical object called a
distribution that behaves the way one would like an eigenvector of Q to behave, but it’s certainly
not a function, and it’s not an element of H .)

If the position observable is represented by the operator Q , how do we represent momentum?
It is at this point that I run out of ways to justify the answers to these questions in an intuitive way
without going beyond what can be done in a four-day class. It is possible for the make the facts
I’m about to relate sound like they’re coming from somewhere, but I won’t be able to present it
in these notes.

The momentum observable is represented by the operator P = −iħh d
d x . (The quantity ħh

appearing here is a physical constant, equal to about 1.055×10−34 kg m2 s−1. It’s called “Planck’s
constant” and it’s often pronounced “h-bar.”) What happens when we try to apply the uncertainty
principle we derived in the last section to Q and P ? Recall that it says that in some stateψ,

VQ VP ≥
1

4
|〈[Q , P ]ψ,ψ〉|2,

where VP and VQ are the variances of position and momentum respectively. So what’s [Q , P ]?
We can compute

([Q , P ]ψ)(x ) =−iħh
�

x
dψ

d x
−

d

d x
(xψ(x ))

�

=−iħh
�

x
dψ

d x
− x

dψ

d x
−ψ(x )

�

= iħhψ(x ).

So [Q , P ] is just multiplication by iħh . This lets us conclude the form of the Heisenberg
uncertainty principle you might have seen before:

VQ VP ≥
ħh 2

4
.

Unlike the examples in the last section, in this case the right side of the inequality is a constant,
so the interpretation we were reaching for before applies more precisely now. The less variance
there is in a state’s position, the more variance there has to be in momentum.

The final piece of the puzzle I’d like to present here is how states evolve through time. We
discussed before that the time evolution ought to be unitary, but we didn’t describe exactly which
unitary functions to use, since that choice depends on the physics. But in this setting we can
give more of an answer (again without much justification.)
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In any quantum system describing something in the physical world, there is an observable
corresponding to the total energy of the system. This is usually called the Hamiltonian and
written as H . (There is an unfortunate clash of notation between this and our state space.) The
exact form the Hamiltonian depends on the physics of the system you’re trying to model. This is
also true in classical physics: if your physics is taking place in a gravitational field, for example,
then there has to be a term for gravitational potential energy.

Once a Hamiltonian has been given, a stateψ evolves through time as follows:

iħh
∂ ψ

∂ t
=Hψ.

This is called the Schrödinger equation. In the exercises, we’ll work through a simple example of
the Schrödinger equation for a particular physical system and draw some conclusions about
how it behaves.

Exercises

1. What would the wavefunction (that is, the functionψwe described in the section) for a
state with definite momentum look like? Is it actually an element of H ?

2. In this problem we’ll describe how to model the state of a single, one-dimensional free
particle of mass m . We’ll just be scratching the surface here; for more details, check any
book on quantum mechanics.

(a) Since there are no forces acting on the particle, its total energy is just its kinetic energy.
Show that the (classical) kinetic energy of a particle of mass m is equal to p 2/2m ,
where p is its momentum.

(b) Given this, our Hamiltonian for this system will be H = P 2/2m , so the Schrödinger
equation says that

iħh
∂ ψ

∂ t
=

1

2m
P 2ψ.

Use the definiton of P from the section to write this as a differential equation involving
derivatives ofψwith respect to both t and x .

(c) Supposeψwere an eigenvector of P with eigenvalue p . What would this equation
imply aboutψ? Solve the equation in this case.
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