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1 Introduction
This entire class will be focused on a single question. Given two curves in the plane, each of
which is described by a polynomial equation, we will be interested in counting the number
of points where the two curves intersect. More formally, the objects we’re going to look at are
defined as follows:

Definition 1.1. For any nonconstant polynomial f (x , y ) in two variables, we’ll define the al-
gebraic plane curve cut out by f to be the set of points (x , y ) in the plane which satisfy the
equation f (x , y ) = 0.

We exclude constant polynomials because, if we did include them, the “curve” they cut out
would be either empty or the whole plane, depending on whether the constant is zero or not.
Here are some pairs of algebraic plane curves with their intersection points marked:

G − F2 + 1 = 0
G − 1 = 0

G 2 − 6F3 − 6F2 = 0
F − 8G 3 + 6G + 1

2 = 0
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(F2 − 1)2 + (G 2 − 1)2 − 3
4 = 0

G 2 − F2 + 1
2 = 0

F2 − G 2 = 0
F2 + G 2 − 1 = 0

In each of these examples, there’s an interesting pattern to notice if we look at the degrees of
the polynomials which cut out each curve: the number of intersection points is always exactly
equal to the product of the degrees of the two polynomials. This is the result we’ll spend this
class proving:

Theorem 1.2 (Bézout’s Theorem, False Version). Let f and g be nonzero polynomials in two
variables, with deg f = d and deg g = e . Then the curves cut out by f and g intersect in exactly
d e points.

One thing you might have noticed about this theorem, if you either thought about it hard
enough or read its title closely enough, is that it’s not true. Here are a few counterexamples:

F2 + G 2 − 1 = 0
F2 + G 2 − 1 = 0

G − F2 = 0
G + 1 = 0

F + G = 0
F + G − 1 = 0

G − F2 = 0
G = 0
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If we’re going to spend this entire class proving this theorem, we’re going to have to find a
way to modify the statement into one that’s true! By studying these counterexamples closely, we
can see a few things we might do:

• The first example involves the intersection of a curve with itself, which of course gives
infinitely many intersection points. The solution to this problem will be to simply disallow
it.

It’s not quite as simple as asking for f to not be equal to g , though. Notice that if we factor
f as a product of two polynomials, say f (x , y ) = f1(x , y ) f2(x , y ), then the set of points
where f = 0 is the set of points where either f1 or f2 is zero. This means that we’ll get a
similar problem if f and g have a common factor — if, say, f = f1 f2 and g = f1g2 — even if
f and g aren’t equal. We’ll have to disallow this case too.

• Next, look at the second example, where f (x , y ) = y − x 2 and g (x , y ) = y +1. Any inter-
section point of these two curves would be at a point where y = x 2 and y = −1, which
of course would mean that x 2 =−1. There is of course no real number that satisfies this
equation, but there are complex numbers which do: we can take x = i or x =−i , which
gives us the two intersection points (i ,−1) and (−i ,−1). This suggests that we’re going to
need to work over the complex numbers.

• The third example consists of the two parallel lines cut out by f (x , y ) = x + y and g (x , y ) =
x + y −1. The complex numbers won’t help you here — if we had some (x , y ) that satisfied
both of these equations we would be able to conclude that 0= 1. Notice, though, that if I
turn one of the two lines just a little bit, the lines will no longer be parallel, and so they will
intersect. As the lines get closer and closer to being parallel, this point moves further and
further away, shooting “off to infinity” in the direction of the parallel lines.

This suggests that, if we somehow augment the plane with some extra “points at infinity,”
then this process might be able to approach some sort of limit, and we might be able to
recover Bézout’s Theorem. We’ll start on this project in the very next section.

• Finally, look at the fourth example, where f (x , y ) = y − x 2 and g (x , y ) = y . An intersection
point of these two curves must happen at a point where y = x 2 and y = 0, which means
x 2 = 0. Unlike the case which inspired us to work over the complex numbers, this last
equation only has the solution x = 0, and we correspondingly get (0, 0) as the only intersec-
tion point, even overC. And, while we won’t be able to prove this precisely until we have a
formal definition of points at infinity, it seems visually clear that these two curves go off to
infinity in totally different directions, and so probably don’t intersect at infinity either.

The solution to this problem is perhaps a bit more abstract than the others. You might
recall that, when counting roots of polynomials in one variable, in order for the total count
to equal the degree you need to count the roots with multiplicity. The same will be true
for Bézout’s Theorem. (In fact, as this example shows, the task of counting the roots of
some polynomial p (x ) can be seen as a special case of Bézout’s Theorem — look at the
intersection of y −p (x ) = 0 and y = 0.)

In this case, because we ended up with the equation x 2 = 0, it’s probably easy to believe that
the “correct” multiplicity to assign is 2, and this does give us the right count for Bézout’s
Theorem. In general, though, when neither of the curves is a line like y = 0, the definition
of intersection multiplicity is trickier, and it will have to wait until we’re close to the end of
our journey.
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It will turn out that, once all four of these problems have been addressed, Bézout’s Theorem
will actually be true. The first two are relatively straightforward to solve: disallow pairs of
polynomials with common factors, and work over the complex numbers. The last two, though,
will be quite a bit harder: it’s not clear yet precisely what we even mean by points at infinity or
points with multiplicity.

That’s the task ahead of us for the next few days. We will give precise definitions of these last
two concepts and we’ll use them to give a proof of the new, corrected version of the theorem.

Exercises

In these exercises, and for the entire rest of this class, you should feel free to assume the Funda-
mental Theorem of Algebra, which says that any non-constant one-variable polynomial over C
has a zero.

Exercises that are especially important for the rest of the class have been marked with ".

1.1. How many intersection points are there between the curves x 2+3y 2−4= 0 and 3x 2+ y 2−
4= 0? Draw a picture of these two curves and their intersection points. If Bézout Theorem
is true, what are the intersection multiplicities at all of the points you found? Are there any
intersection points at infinity?

1.2. Give an example of a nonconstant polynomial f (x , y )with real coefficients such that there
are no points (x , y ) ∈R2 for which f (x , y ) = 0. (When this happens, we say that the curve
corresponding to f has no real points.)

1.3. In Exercise 1.2, you found a curve with no real points. In this exercise, we’ll show that this
can’t happen over the complex numbers. (This is another reason, in addition to Bézout’s
Theorem, that the study of algebraic curves is much nicer overC than overR.) Throughout
this exercise, let f (x , y ) be a nonconstant polynomial with complex coefficients.

(a) Suppose the curve cut out by f has no points on the horizontal line y = a . What can
we conclude about f (x , a ), thought of as a polynomial in x ?

(b) Prove that this can only happen for finitely many values of a . [Hint: Think of f as a
polynomial in x with coefficients that are polynomials in y . If, for some a , there are no
solutions to the equation f (x , a ) = 0, what does that mean about these coefficients?]

(c) Conclude that there must be at least one point (x , y ) ∈C2 with f (x , y ) = 0.

1.4. "In Exercise 1.3, you showed that for every non-constant two-variable complex polyno-
mial f (x , y ), there is at least one point inC2 where it vanishes. In this exercise, you’ll show
that (as long as f 6= 0) there is also at least one point where f doesn’t vanish.

(a) Suppose f is zero at every point on the horizontal line y = a . Prove that y −a divides
f , that is, there is some polynomial g (x , y ) such that f (x , y ) = (y −a )g (x , y ). [Hint:
First, plug y = (y −a ) +a into f and write f as a polynomial in (y −a ) and x .]

(b) Conclude that if f is not the zero polynomial then there can only be finitely many
a ’s with the property that f vanishes on the entire horizontal line y = a .

(c) Finally, conclude that there are infinitely many points where f doesn’t vanish.



Section 2 The Projective Plane 5

2 The Projective Plane
In the last section, we identified four problems with the original, incomplete statement of
Bézout’s Theorem: the polynomials can’t have a common factor, we need to work over the
complex numbers, we need to count intersection points with multiplicities, and we need to
count “points at infinity.” Of these four problems, the first two are by far the simplest: for the first,
just don’t allow polynomials with common factors; for the second, consider polynomials with
complex coefficients and look for intersection points with complex coordinates. The problem of
how to define multiplicities will need to wait until we’ve discussed an object called the resultant,
which will be the main tool we’ll use to prove the theorem.

So in this section, we’ll learn how to formalize the concept of curves intersecting at infinity.
We will do this by defining a space called the projective plane which is slightly larger than the
ordinary plane, and which in particular contains the points at infinity we’re looking for. For
every algebraic plane curve, there will be a unique way to extend it to a curve in this new, slightly
larger plane. A pair of curves will then be said to “intersect at infinity” if their extensions to the
projective plane intersect at a point that isn’t on the original, ordinary plane.

2.1 Points as Lines in Space

We’ll define the projective plane with the help of the following picture. (Even though we just
made a big fuss about working over the complex numbers, all of the pictures in this section are
going to use the real numbers, sinceR2 is much easier to visualize thanC2.) Take the plane R2,
and stick it in 3-space as the plane z = 1. That is, the point (x , y ) ∈R2 will be represented by the
point (x , y , 1) ∈R3. -

To every point in the plane, we can associate a line through the origin in R3: since the last
coordinate of the point (x , y ,1) isn’t 0, we know that (x , y ,1) and (0,0,0) aren’t the same point,
and so there’s a unique line passing through both of them. Moreover, this accounts for almost all
of the lines through the origin inR3. Given a line through the origin in R3, we can look at where
it intersects the plane z = 1, and this will tell us what point it should correspond to. The only
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way this will not work is if the line doesn’t intersect the plane z = 1, that is, if it’s contained in the
x y -plane.

In other words, there is almost, but not quite, a one-to-one correspondence between points
in the plane and lines through the origin inR3. If these extra lines were to correspond to points in
the plane, where would those points be? We can answer this by taking a line that does correspond
to a point in the plane, rotating the line until it lies flat in the x y -plane, and keeping track of
what happens to the point in the plane as we do this. t*

In the example shown, the point on the plane always lies along the x -axis, which reflects
the fact that the line always stays in the x z -plane, so the point can never have a nonzero y
coordinate. Notice that, as the line approaches the x y -plane, the point in the plane gets further
and further away from the origin along the x -axis. It might, therefore, make sense to say that
when the line does finally lie completely flat, it ought to correspond to a point that is “infinitely
far away” in the x direction.

This whole story inspires the following definition.

Definition 2.1. The real projective plane RP2 is the set of lines through the origin in R3. The
lines in R3 that are contained in the x y -plane are called points at infinity in the projective
plane.

It’s important to remember that a point of the projective plane is a line inR3. This is confusing
enough and easy enough to forget that we’ll often use slightly different language to describe the
situation, saying that a point p ∈RP2 “corresponds to” a line L through the origin in R3, rather
than the more technically accurate statement that it just “is” that line. My hope is that this will
help us keep the distinction between points and lines clear when it matters.

The setup we’ve described here has one consequence which might not be obvious. The
x -axis looks like it has two “ends”, one far to the right and one far to the left, so you might expect
that this would give us two different points at infinity along the x -axis. But if we take our picture
of the rotating line and keep rotating the line past the point where it lies in the x y -plane, we
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see that the corresponding point in the plane is now once again very far from the origin along
the x -axis, but now to the left rather than to the right. In other words, our “point at infinity” is
“close” to points on the far left side of the x -axis as well as points on the far right side.

This means that our original mental picture, where there are two points at infinity on the
x -axis, one in each direction, requires a small adjustment. There is actually just one point at
infinity along the x -axis, and it should be thought of as both infinitely far to the left and infinitely
far to the right.

The same thing will be true of every line in the plane, as we’ll see more formally in just a
moment: when we pass from the ordinary plane to the projective plane, every line gets aug-
mented with one additional point, which we think of as lying “at infinity” along that line in either
direction. A good way to visualize this is that, rather than capping off a line at both ends, which
would make it look something like a closed line segment, we are instead attaching the two ends
to each other, resulting in something more like a circle.

2.2 Homogeneous Coordinates

Our goal is to talk about algebraic curves in the projective plane. In order to do this, we’re going to
need some way to put coordinates on points inRP2, since otherwise we won’t have any numbers
to plug into our polynomials. We have already chosen to represent a point from the ordinary
plane using the point (x , y , 1) ∈R3, which gives us one possible idea for how to give coordinates
to a point in the projective plane: given some point in the projective plane, which corresponds to
a line L through the origin inR3, we could choose coordinates by picking the point on L which
has 1 as its z coordinate.

This idea, though, fails to account for our points at infinity, which after all correspond to
lines that lie in the x y -plane and so don’t have any points with 1 as their z coordinate. We would
like to have a uniform system of coordinates that works for the entirety of the projective plane,
and we can accomplish this if we simply remove the restriction on the z coordinate:

Definition 2.2. Let p be a point inRP2, corresponding to the line L inR3. We’ll say a triple of real
numbers x , y , z gives homogeneous coordinates for p if (x , y , z ) is some point on L other than
the origin. When referring to a point inRP2 using homogeneous coordinates, we will always use
the notation [x : y : z ], not (x , y , z ), to remind us that we are not talking about the point with
those coordinates in R3.

Since any point other than the origin gives us a unique line passing through both the origin
and that point, [x : y : z ]will always pick out a valid point of the projective plane as long as x , y ,
and z aren’t all 0. And, since the origin is the only point where two lines through the origin can
intersect, any set of homogeneous coordinates picks out a unique line, and therefore a unique
point of RP2. But any point of RP2 can be described by many different sets of homogeneous
coordinates: as long as (x , y , z ) and (x ′, y ′, z ′) lie on the same line through the origin, the points
[x : y : z ] and [x ′ : y ′ : z ′] in RP2 will be identical.

How can we detect whether this happens just by looking at the coordinates themselves?
If (x , y , z ) is some non-origin point in R2, then I encourage you to verify that the line passing
through (0,0,0) and (x , y , z ) is the line {(αx ,αy ,αz ) : α ∈ R}. So what this means is that the
coordinates [x : y : z ] and [x ′ : y ′ : z ′] refer to the same point of the projective plane if and only if
one set of coordinates is a scalar multiple of the other, that is, for some α 6= 0, we have x ′ =αx ,
y ′ =αy , and z ′ =αz .

This gives us an alternative, more algebraic way of thinking about the real projective plane:
it’s the set of all triples of real numbers [x : y : z ], except that (a) we exclude the triple [0 : 0 : 0],
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and (b) if α 6= 0, then [x : y : z ] and [αx :αy :αz ] denote the same point.

·
⑳

=
So, given some homogeneous coordinates [x : y : z ], we can turn them into a different set of

homogeneous coordinates for the same point by multiplying all three coordinates by the same
factor α 6= 0. (Using α= 0 would be a problem, since that would give us [0 : 0 : 0], and this is the
only set of homogeneous coordinates that doesn’t pick out a point of the projective plane!) In
particular, if z 6= 0, then we are free to multiply by 1/z , producing [x/z : y /z : 1]. In other words,
if z 6= 0, then the homogeneous coordinates [x : y : z ] describe a point on the ordinary plane
(namely the point (x/z , y /z )). On the other hand, if z = 0, then [x : y : z ] is a point at infinity.

2.3 Homogenization

The reason we introduced homogeneous coordinates was to enable us to extend algebraic curves
from the ordinary plane to the projective plane. Let’s do that now.

There is a complication that shows up when we try to define algebraic curves in the projective
plane that doesn’t appear when in the ordinary plane: homogeneous coordinates give us many
different “names” for the same point. Suppose, for example, we tried to define an curve in the
projective plane using the equation x 2+ x y + z 2−1= 0. Is, for example, the point [1 : 0 : 0] on
this curve? It would seem like the answer is yes, because if you plug in x = 1, y = 0, and z = 0 into
this equation you see that it’s true. But we have a problem, because [1 : 0 : 0] is the same point as
[2 : 0 : 0], and 22+0 ·0+02−1 6= 0. So this equation doesn’t seem to cut out a well-defined subset
of RP2; the question of whether a point belongs on the curve can depend on which coordinates
we use for it.

One way to see what the problem is involves looking at each term of the polynomial separately.
Suppose have a term of degree d , say k x a y b z c where a +b + c = d . If we replace [x : y : z ]with
[αx :αy :αz ], then k x a y b z c becomes αd ·k x a y b z c — in other words, multiplying x , y , and z
by α has the effect of multiplying a term of degree d by αd . If f is a polynomial in which every
term has degree d , the same thing will then be true of f .

So, if some polynomial f has only terms of degree d , we won’t run into the situation we ran
into in our example. This is because, if some triple x , y , z satisfies the equation f (x , y , z ) = 0,
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then we’ll have f (αx ,αy ,αz ) =αd f (x , y , z ) = 0, so the question of whether a point satisfies the
equation won’t depend on which name we use for the point. Our polynomial above didn’t work
because it has terms of different degrees: the first three terms have degree 2 but the last term
has degree 0.

We can summarize the situation as follows:

Definition 2.3. If f (x , y , z ) is a polynomial and every term of f has degree d , then we say f is a
homogeneous polynomial of degree d . If f is homogeneous, the preceding discussion shows
that the set of points in the projective plane where f = 0 is well-defined; a subset of the projective
plane that arises in this way is called a projective plane curve.

Note that, even though a homogeneous polynomial cuts out a well-defined subset of the
projective plane when you look at the points where it’s equal to 0, that doesn’t mean it gives a well-
defined function on the projective plane — it doesn’t! The coordinates [x : y : z ] and [αx :αy :αz ]
refer to the same point, but f (αx ,αy ,αz ) =αd f (x , y , z ), so even if f is homogeneous there is
no meaningful definition we can assign to “the value of f at this point.” Luckily, we are only
concerned with which curve f cuts out, so we only care about whether or not f is zero, and the
answer to this question doesn’t change if we multiply by αd when α 6= 0.

Our goal at the very beginning of this section was to find a way to decide whether two
algebraic curves (in the ordinary plane) intersect at infinity. There is one task remaining: we
need a way to take an algebraic curve in the ordinary plane and extend it to a curve in the
projective plane. Now that we’ve nailed down the type of polynomials we want to use to describe
projective plane curves, we can state our task more precisely. Given a polynomial f (x , y ) in two
variables, we want to find a homogeneous polynomial g (x , y , z ) in three variables which cuts out
a curve that, when you restrict it to the ordinary plane, is the same as the curve cut out by f .

Since the point (x , y ) of the ordinary plane corresponds to the point [x : y : 1] in the projective
plane, we can restrict our polynomial g to the ordinary plane by just plugging in z = 1. So, to go
the other direction, we need a way to start with f and produce a homogeneous polynomial g
which, if we plug in z = 1, gives us back f . This is accomplished by the following procedure:

Definition 2.4. Let f (x , y ) be a polynomial of degree d . The homogenization of f is the poly-
nomial produced from f by replacing every term k x a y b with k x a y b z d−a−b .

In other words, if the highest-degree term of f has degree d , we homogenize f by taking
every term whose degree is smaller than d and adding a high enough power of z to raise its
degree up to d . For example, the homogenization of 3x 2+ x y 2−1 is 3x 2z + x y 2− z 3: the first
term had degree 2, so it needed just one z to get it to degree 3, but the last term had degree 0
and so needed three z ’s.

As an example, let’s see that we’ve succeeded in making two parallel lines intersect at infinity;
since we already know that two non-parallel lines intersect in the ordinary plane, this will
essentially give us a proof of Bézout’s Theorem in the case that both degrees are 1 (as long as we
believe that the intersection multiplicity is also 1).

Suppose f (x , y ) = a x + b y + c and g (x , y ) = a ′x + b ′y + c . The two lines cut out by these
equations will be parallel if a/b = a ′/b ′ (or if b and b ′ are both zero, but let’s assume they’re both
nonzero for now for simplicity). Let’s say a/b = a ′/b ′ =m . We can multiply these polynomials
by a constant without changing the curves they describe, so let’s multiply f by 1/b and g by 1/b ′.
Then, (writing k = c /b and k ′ = c ′/b ′) we have f (x , y ) =m x + y +k and g (x , y ) =m x + y +k ′.

When we homogenize these two polynomials, we get f (x , y , z ) =m x+y +k z and g (x , y , z ) =
m x + y +k ′z . Now, since these are two parallel lines and not the same line twice, we must have
k 6= k ′. We therefore see that, if z 6= 0, then these two polynomials can’t vanish simultaneously.
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This is what we should expect — this corresponds to looking for an intersection point on the
ordinary plane, and there aren’t any!

What about at infinity? The points at infinity are the points where z = 0. Note that this is
itself a linear homogeneous polynomial; for this reason we say that the equation z = 0 cuts
out the line at infinity. If z = 0, we are just looking for a point [x : y : z ] where m x + y = 0. I
encourage you to verify that the only such point is [1 :−m : 0]. (Remember that if you multiply
all the coordinates by a nonzero constant it’s the same point!)

So we have successfully found the point at infinity where our two parallel lines intersect.
Interestingly, we also see that from this that the point we get depends on the slope of the parallel
lines. So, in particular, two lines with different slopes — that is, two non-parallel lines — will
intersect the line at infinity at different points. We’ve therefore preserved the fact that two
non-parallel lines intersect at just 1 point, even in the projective plane.

Exercises

Exercises that are especially important for the rest of the class have been marked with ".

2.1. For any complex number a , consider the curves cut out by the equations y − x 2 = 0 and
x −a = 0. Where do they intersect in the ordinary plane? Where do they intersect in the
projective plane?

2.2. "

(a) Suppose f (x , y , z ) is a homogeneous polynomial of degree d . Prove that

f (x , y , z ) = z d f (x/z , y /z , 1).

(b) Suppose f (x , y , z ) and g (x , y , z ) are homogeneous polynomials which both have
degree d , and that f (x , y , 1) = g (x , y , 1) as polynomials in x and y . Prove that f = g .
What does this result tell you about algebraic curves?

(c) What can we conclude about f and g if we drop the requirement that they have the
same degree? What does this result tell you about algebraic curves?

(d) Let f (x , y ) be a homogeneous complex polynomial in two variables. Prove that f
can be written as a product of linear homogeneous polynomials, that is, we have

f (x , y ) = (a1 x + b1 y )(a2 x + b2 y ) · · · (an x + bn y )

for some ai ’s and bi ’s. [Feel free to use the corresponding fact for non-homogeneous
complex polynomials in one variable.]

2.3. In Exercise 1.3, you showed that in the ordinary plane, every curve has at least one complex
point. The proof was somewhat involved, but in the projective plane it’s quite a bit easier.
Prove that, if f (x , y , z ) is a nonconstant homogeneous polynomial, then there is always at
least one point where f vanishes. [Hint: One solution involves plugging z = 0 into f and
then using Exercise 2.2d.]

2.4. (a) Where does the circle cut out by the equation x 2+ y 2 = 1 intersect the line at infinity
(again working over the complex numbers)? You should get exactly two points.

(b) An arbitrary circle is given by an equation of the form (x −a )2+ (y − b )2 = r 2. Prove
that every circle passes through the two points you found in part (a). (For this reason,
they are sometimes called the circle points.)
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3 Resultants
Bézout’s Theorem is all about counting the number of points where two different polynomials
in two variables are both equal to zero. We’ll begin our investigation of this question by first
answering it for polynomials in one variable.

This is not just a “practice” version of the question we’re actually interested in; answering
the one-variable version of the question will be directly useful for answering the two-variable
version. We will go into more detail in the following sections, but as a quick preview, suppose
we had a way to tell, for any pair of one-variable complex polynomials f and g , whether f and
g have a common root, that is, whether there’s some complex number αwith f (α) = g (α) = 0.
We could then leverage this in our search for the points where two two-variable polynomials
are both zero, using the following trick. Given two polynomials p (x , y ) and q (x , y ), pick some
number β and plug it in for y . This has the effect of restricting our attention to the horizontal
line y =β . If we then use our one-variable procedure to ask whether p (x ,β ) and q (x ,β ) have a
common root, we will learn whether there is an intersection point on this horizontal line. As we
will see in the next section, this will be an important step in our quest to count the total number
of intersection points.

The tool that accomplishes this task will be called the resultant. In order to build it and prove
that it works, we’re going to have to make use of a few facts that we won’t have time to prove in
the main part of this article. We’ll go through those now, and then move on to the resultant itself.

3.1 A Quick Review of Determinants

The first of these prerequisites involves the concept of the determinant of a matrix. It is my hope
that you’ve encountered determinants before and that this will serve as review. If not, the quick
discussion we’re about to have really doesn’t come close to doing the topic justice; this section
would be a remarkably bad way to learn about determinants for the very first time. In particular,
there is a beautiful geometric description of the determinant which, in my opinion, is really the
best way to think about it, but which we won’t touch on at all.

For our purposes, the determinant is a tool for determining whether a system of linear
equations has a nontrival solution. We’ll start by being precise about what that means.

Definition 3.1. A system of m homogeneous linear equations in n variables is a collection of
equations of the form

a11 x1+a12 x2+ · · ·+a1n xn = 0

a21 x1+a22 x2+ · · ·+a2n xn = 0

...

am1 x1+am2 x2+ · · ·+amn xn = 0.

(You will sometimes see linear equations with nonzero constants on the right side, but we will
only be interested in the case where they’re all zero; this is what is meant by “homogeneous.”)

The ai j ’s should be thought of as fixed; we’re interested in looking for values of the x j ’s which
make all the equations true. Any n-tuple of numbers (x1, . . . , xn )which satisfies all m equations
in a system of linear equations is called a solution of the system. Note that setting all the x j ’s
to 0 will always give a solution no matter what the equations are; a solution with at least one
nonzero number in it is called a nontrivial solution.
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We can represent a system of equations using a two-dimensional grid of numbers called the
matrix of the system of equations:









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn









.

When a matrix has m rows and n columns like this, we will call it an “m ×n matrix.”

One result that you might prove in a linear algebra class is that if there are fewer equations
than variables — that is, if m < n — there will always be a nontrivial solution. On the other hand,
if m = n , the existence of a nontrivial solution depends on the values of the coefficients ai j . This
is the case we’re interested in.

The first interesting case is when m = n = 2, where we have a system of the form

a x + b y = 0

c x +d y = 0.

In this case, it turns out that there’s a nontrivial solution if and only if one of the equations is a
multiple of the other. I encourage you to verify this if you’ve never done it before, and to check
that this is equivalent to the statement that a d − b c = 0.

The quantity a d − b c is the determinant of the 2×2 matrix
�

a b
c d

�

.

If M is the matrix, we’ll often write its determinant as det M . The utility of the determinant
comes from the fact that it allows you to check whether the system has a nontrivial solution by
just plugging the coefficients into this formula, which allows you to avoid having to actually
find the values of x and y . When you just care about whether there is a nontrivial solution and
not what the solution actually is — as will be the case for us when we discuss the resultant —
computing the determinant can be less work than actually solving the equations.

There is a bigger, more complicated formula for the determinant of a larger system of lin-
ear equations. We will actually only need a couple of small facts about this formula, but for
completeness here is one definition:

Definition 3.2. Consider an n ×n matrix

M =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann









.

If n = 1, then our matrix has the form (a11), and we’ll say that det(a11) = a11. Otherwise,
we’ll define the determinant of our n ×n matrix recursively in terms of the determinant of an
(n −1)× (n −1)matrix as follows.

Suppose we know how to compute (n −1)× (n −1) determinants. For any i and j , write mi j

for the determinant of the matrix you get by deleting the i ’th row and j ’th column of M . We
then define

det M = a11m11−a12m12+a13m13− · · ·±a1n m1n ,
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with plus and minus signs alternating every term. (The sign of the last term therefore depends
on whether n is even or odd.)

For example, in the 3×3 case, we have

det





a11 a12 a13

a21 a22 a23

a31 a32 a33



= a11(a22a33−a23a32)−a12(a21a33−a23a31) +a13(a21a32−a22a31).

I also encourage you to verify that Definition 3.2 agrees with the formula for a 2×2 determinant
we discussed up above.

As mentioned above, we won’t actually care about the details of this formula. There is only
one fact we’ll actually need, which we’ll set off as a separate proposition for later convenience:

Proposition 3.3. The determinant of an n ×n matrix is a polynomial in the entries of the matrix.
Each term of the polynomial contains exactly one entry from each row and each column.

And of course, the reason we care about this otherwise quite arbitrary-looking formula is
that it accomplishes the task we described at the beginning of this discussion:

Theorem 3.4. Consider a system of n linear equations in n variables, say

a11 x1+a12 x2+ · · ·+a1n xn = 0

a21 x1+a22 x2+ · · ·+a2n xn = 0

...

an1 x1+an2 x2+ · · ·+ann xn = 0,

and write

M =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann









for the corresponding matrix. Then the system has a nontrivial solution if and only if det M = 0.

3.2 Factoring Polynomials

The next set of facts we’ll need concern factoring polynomials. Since many of them (with the
possible exception of Proposition 3.8) are probably familiar, we won’t be proving any of them
here. For now, we’ll just state the facts we need.

We’ll start with a couple of probably familiar facts about factoring one-variable polynomials
over C.

Lemma 3.5. Let f be a complex polynomial in one variable and let α be a complex number.
Then f (α) = 0 if and only if (x −α) divides f , that is, if there exists some polynomial ef such that
f (x ) = (x −α) ef (x ).

Lemma 3.6. If f is a nonzero complex polynomial in one variable with degree n, then we can
write

f (x ) = c (x −α1)(x −α2) · · · (x −αn )



Section 3 Resultants 14

for some complex numbers c ,α1, . . . ,αn , where c 6= 0 and these numbers are unique up to reorder-
ing the αi ’s. (Notice that the n here counting the number of αi ’s is the same as the degree of f !) For
any number α, we have f (α) = 0 if and only if α is one of the αi ’s.

The story gets a bit more complicated when we consider polynomials in more than one
variable. In that setting, even over the complex numbers, it’s possible for polynomials to fail to
factor nontrivially even when their degree is bigger than 1. We therefore introduce the following
definition:

Definition 3.7. If f and g are polynomials, we say that g divides f if f = g h for some polynomial
h . A polynomial f is called irreducible if the only polynomials that divide it are constants and
constant multiples of f . In other words, whenever we have f = g h for some polynomials g and
h , one of g or h must be a constant.

I encourage you to check, for example, that the polynomial x y − 1 can’t be written in the
form (a x + b y + c )(d x + e y + f ), making x y −1 an irreducible polynomial of degree 2. Despite
this complication, we still have a result similar to Lemma 3.6:

Proposition 3.8. Any polynomial f can be factored into irreducibles, that is, we can write

f = f1 f2 · · · fk

where each fi is irreducible. Furthermore, the fi ’s are uniquely determined by f (up to multiplying
each one by a constant).

For such an intuitively believable statement, the proof of the uniqueness part of Proposition
3.8 is surprisingly involved, quite a bit more so than Lemmas 3.5 and 3.6. We will actually need
the full power of this result only once, in the proof of Lemma 3.9 below. That lemma will itself
only be used for multi-variable polynomials once in the next section, when we show in the proof
of Lemma 4.3 that the resultant of two polynomials with no common factors is nonzero. Every
other application of the results from this subsection only depends on the one-variable case,
which is handled by the much simpler Lemmas 3.5 and 3.6.

3.3 The Resultant

In our review of determinants just now, we saw that it there was an expression we could write
down in terms of the coefficients of the linear equations in the system which is equal to zero
if and only if all the equations have a common solution. Inspired by this, we are going to look
for a way to tell whether two polynomial equations have a common solution by looking at the
coefficients of the polynomials.

For polynomials in one variable over the complex numbers, the existence of a common
solution is equivalent to the existance of a common factor. (This follows from the results about
factoring polynomials we just stated; I encourage you to try to prove it.) But it will turn out in
the next section that we’ll need to apply the technology of resultants to polynomials in multiple
variables, where these two concepts are not equivalent. For this reason, we will phrase all of our
results in terms of common factors rather than common solutions so that they apply both to the
one-variable complex case we are interested in here and to the cases we will care about later on.

Our plan will be to turn the question of the existence of a common factor into a question
about solutions of a system of linear equations, which we already have a handle on thanks to
our knowledge of the determinant. The key to making this work will be the following result.
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Lemma 3.9. Suppose f and g are nonzero complex polynomials, possibly with several variables,
with deg( f ) = r and deg(g ) = s . Then f and g have a common factor if and only if there exist
polynomials A and B such that:

• A and B are not both the zero polynomial,

• deg(A)< s and deg(B )< r , and

• A f +B g = 0.

Proof. First, suppose f and g have a common factor, say f (x ) = h (x ) ef (x ) and g (x ) = h (x )eg (x )
for some polynomials ef and eg , which are nonzero because f and g are. But then

eg f + (− ef )g = eg h ef − ef h eg = 0,

so we can take A = eg and B =− ef . (I encourage you to verify that the condition on the degrees is
satisfied.)

Conversely, suppose there exist A and B satisfying the conditions listed above. First, note
that while we have only assumed that A and B aren’t both zero, in fact neither can be, because if
(say) B = 0 and A 6= 0, then we would have A f = A f +B g = 0, and (as you’ll show in Exercise 3.3)
this would mean that f = 0, which is a contradiction.

Using Proposition 3.8, write f = f1 · · · fk , g = g1 · · ·g l , and B = b1 · · ·bm . Because the factoriza-
tions from Proposition 3.8 are unique, and A f =−B g , each of the fi factors from the left side
of this equation must appear on the right, either as one of the g i ’s or one of the bi ’s. But, since
we’ve assumed that deg(B )< r = deg( f ), it’s not possible for them to all be accounted for by the
bi ’s — the sum of the degrees of the bi ’s is deg(B ), which is smaller than the sum of the degrees
of the fi ’s. So in fact at least one fi must be equal to some g j , that is, f and g have a common
factor.

As promised, we can turn the question about the existence of A and B into a system of linear
equations. For now, we’ll only worry about the one-variable case. Suppose we have

f (x ) = fr x r + · · ·+ f1 x + f0

g (x ) = g s x s + · · ·+ g1 x + g0.

Let’s also write

A(x ) = as−1 x s−1+ · · ·+a1 x +a0

B (x ) = br−1 x r−1+ · · ·+ b1 x + b0,

where we treat the ai ’s and bi ’s as unknowns; the fact that we go up to x s−1 and x r−1 here reflects
the assumptions on the degrees of A and B from the lemma statement.

Now, A f + B g will be a polynomial of degree at most r + s − 1, so it can be specified by a
list of r + s coefficients, going from the coefficient of x r+s−1 down to the constant term, and of
course A f + B g = 0 if and only if all r + s of these coefficients are equal to zero. And the key
realization here is that looking at each of these coefficients gives a linear equation in the ai ’s
and bi ’s! In other words, the question of whether there exist polynomials A and B of the right
degrees such that A f + B g = 0 is equivalent to the question of whether there exist numbers
a0, a1, . . . , as−1, b0, b1, . . . , br−1 satisfying a system of linear equations.
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The form these linear equations take will probably be clearer if we first look at a small example.
Suppose r = 2 and s = 3. Then we have five unknowns: a0, a1, a2, b0, and b1. I encourage you to
check that, in order for A f +B g to equal 0, the following five equations need to be satisfied:

f0a0+ g0b0 = 0

f1a0+ f0a1+ g1b0+g0b1 = 0

f2a0+ f1a1+ f0a2+g2b0+g1b1 = 0

f2a1+ f1a2+g3b0+g2b1 = 0

f2a2+ g3b1 = 0

Since this gives five linear equations in five unknowns, we see that there exists a nontrivial
solution of this system of equations — and therefore an A and a B with A f +B g = 0 which aren’t
both zero, and therefore a common factor of f and g — if and only if

det











f0 g0

f1 f0 g1 g0

f2 f1 f0 g2 g1

f2 f1 g3 g2

f2 g3











= 0.

(Here we’re following the common convention that empty entries in a matrix are zero.)
This brings us, finally, to the definition we’ve been building up to.

Definition 3.10. Let f and g be complex polynomials, with deg( f ) = r and deg(g ) = s , and say

f (x ) = fr x r + · · ·+ f1 x + f0

g (x ) = g s x s + · · ·+ g1 x + g0.

The Sylvester matrix of f and g is the (r + s )× (r + s )matrix



























f0 g0

f1 f0 g1 g0
...

...
...

...
...

...

fr fr−1
... f0 g s g s−1

... g0

fr

... g s

...
...

...
fr g s



























.

That is, the first s columns each contain the coefficients of f in order, starting in the j ’th row in
column j , and the last r columns each contain the coefficients of g arranged in a similar way.
(While this picture of the matrix makes it look like the final f0 and the final g0 start on the same
row as each other, this doesn’t necessarily have to be true, as you can see in the example from
earlier.)

The determinant of the Sylvester matrix is called the resultant of f and g , and it’s written
Res( f , g ).

The resultant is the object we’ll be studying for the rest of this class, and all of the discussion
leading up to it shows us that it accomplishes our goal from the beginning of this section: it
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gives us a formula in terms of the coefficients of our two polynomials that can detect whether
the two polynomials have a common factor. Everything we’ve learned in this section can be
summarized as follows:

Theorem 3.11. If f and g are nonzero polynomials with deg( f ) = r and deg(g ) = s , then f and
g have a common factor if and only if Res( f , g ) = 0.

Let’s see this in action in a quick example. Consider the polynomials x 2− (b +1)x + b and
x −2. Since the first polynomial factors as (x − b )(x −1), it’s easy to see without using resultants
that these polynomials have a common factor if and only if b = 2. But let’s try to reproduce this
result using Theorem 3.11.

The Sylvester matrix in this case will be





b −2 0
−(b +1) 1 −2

1 0 1



 ,

which I encourage you to verify. We can compute the determinant of this matrix using the
formula we gave earlier, which gives a resultant of b + 2(−(b + 1) + 2) = 2− b . So, indeed, the
resultant is zero if and only if b = 2, exactly as we expected from Theorem 3.11.

This fact will be the main tool we’ll use to tackle the proof of Bézout’s Theorem. If we are
working with one-variable polynomials, then our earlier discussion implies that we can conclude
that f and g have a common root if and only if their resultant is zero. We will discuss how to
apply this result to multiple-variable polynomials in the next section.

Exercises

Exercises that are especially important for the rest of the class have been marked with ".

3.1. Consider the polynomials x 2 − 1 and (x −a )2 − 1, where a is a constant. Without using
resultants, for which values of a will these two polynomials have a common root? Now,
compute the resultant of these two polynomials and show that you get the same answer.
[Hint: The resultant you get should be a 4−4a 2.]

3.2. Consider the polynomials x 2+ y 2−1 and x −a .

(a) Treat y and a as constants and compute the resultant of these two polynomials.
(Your answer should be a polynomial in y and a .)

(b) Interpret this result as the answer to the following question: where does the unit
circle intersect the vertical line x = a ? [Hint: In terms of the picture of the circle and
the line, what does it mean when you change the value of a ? What does it mean when
you change the value of y ?]

(c) This question is of course not hard to answer without using resultants. Does the
answer you got in the previous part make sense? If we are looking for real points,
the existence of an intersection point should depend on the value of a . How is that
reflected in your answer?
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3.3. "

(a) Suppose f and g are both complex polynomials. Prove that f g is the zero polynomial
if and only if either f or g is the zero polynomial.

(b) Suppose f , g , and h are polynomials and f is not the zero polynomial. Use the
previous part to prove that, if f g = f h , then g = h .

3.4. Verify that the form of the matrix appearing in Definition 3.10 is correct, that is, that it
indeed corresponds to the system of linear equations you get by looking at the coefficients
of A f +B g .

3.5. [Only if you know a bit of calculus.]

(a) Let f be a one-variable complex polynomial. Prove that Res( f , f ′) = 0 if and only
if f has a multiple root, where f ′ is the derivative of f . [Hint: Factor f in the form
c (x −a1) · · · (x −an ) and use the product rule to compute the derivative.]

(b) The resultant of f and f ′ is called the discriminant of f . Compute the discriminant
of f (x ) = a x 2+ b x + c . The expression you get should be familiar, especially if you
factor out −a . Explain why you ended up with it.



Section 4 Bézout’s Theorem 19

4 Bézout’s Theorem
With the resultant in hand, we now have all the tools in place to prove Bézout’s Theorem. To
see how the resultant will help us, it will be helpful to look at an example. So consider the two
ellipses cut out by the equations x 2+3y 2−4= 0 and 3x 2+ y 2−4= 0, drawn below.

F2 + 3G 2 − 4 = 0
3F2 + G 2 − 4 = 0

Both from the picture and from just plugging values into the equations directly, we can see
that (1, 1), (1,−1), (−1, 1) and (−1,−1) are all intersection points of these two curves. I encourage
you to try to show directly that these are in fact the only intersection points, even over the
complex numbers.

Because we want to also consider intersection points in projective space, we should homoge-
nize these two polynomials, to produce f (x , y , z ) = x 2+3y 2−4z 2 and g (x , y , z ) = 3x 2+ y 2−4z 2.
I encourage you to also check that, in this particular example, we don’t get any new intersection
points at infinity. (This amounts to plugging in z = 0 to restrict to the line at infinity, and then
verifying that the only solution of the resulting equations is x = 0, y = 0; since [0 : 0 : 0] isn’t a
point of projective space, this means there are no additional intersection points.)

So the four points we’ve identified are in fact it. How could we have used resultants to pick
them out? The trick is to think of f and g as polynomials just in the variable x , with coefficients
which are polynomials in y and z . From this perspective, for example, f has two nonzero terms:
an x 2 term with a coefficient of 1, and the constant term 3y 2−4z 2. The resultant will then be the
determinant of a matrix whose entries are polynomials in y and z and so (thanks to Proposition
3.3) will itself be a polynomial in y and z .

When we employ this trick — treating multivariable polynomials like polynomials in one
of the variables and taking the resultant — we’ll stick a subscript on the Res in the notation to
indicate which variable we’re singling out. I encourage you to go back through our discussion
of resultants and convince yourself that everything still goes through if the coefficients are
polynomials rather than numbers.
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In our case, the resultant is

Resx ( f , g ) = det







3y 2−4z 2 0 y 2−4z 2 0
0 3y 2−4z 2 0 y 2−4z 2

1 0 3 0
0 1 0 3







= 64(y 2− z 2)2

= 64(y − z )2(y + z )2.

What does this tell us about intersection points? Imagine we plug in specific values of y and
z , say y = 0 and z = 1. This has the effect of restricting to points of the form [x : 0 : 1], that is,
points on the x -axis. After plugging in these values, our resultant is 64. This is not 0, so Theorem
3.11 tells us there is no point of the form [x : 0 : 1]where f and g are both equal to 0. In other
words, there is no intersection point on the x -axis.

It’s easy to see that the resultant is 0 if and only if y = z or y =−z . Each of these equations
cuts out a line in the projective plane; in fact, if we restrict to the ordinary plane by plugging in
z = 1, we see that they become the horizontal lines y = 1 and y =−1. But, by Theorem 3.11, the
resultant is 0 if and only if there is some α such that the two original polynomials are equal to
zero when we plug in x =α.

So the intersection points of our two curves occur exactly on the lines y = z and y =−z . From
here, if we wanted to find the x coordinates of the intersection points, it would just be a matter
of plugging each of these equations back into the original equations for the curves and solving
for x , which I encourage you to do.

The task we’ve set ourselves, though, is counting the number of intersection points. Notice
that in this example, our resultant was a homogeneous polynomial in y and z of degree 4. It’s an
encouraging sign that 4 is also the number of intersection points we expect to find between two
curves of degree 2. But the method we used here doesn’t quite count the number of intersection
points; it counts the number of horizontal lines that contain intersection points. In this case, we
got only two distinct horizontal lines.

Since we’re looking to count intersection points with multiplicity, you might be encouraged
by the fact that the z − y and z + y factors in the resultant both appeared squared; maybe the 2
is the multiplicity? But sadly, this can’t be right: as we saw when we counted the points by hand,
there are actually four distinct intersection points, two on each of these horizontal lines, and so
if Bézout’s Theorem is going to be true, these points all have to have multiplicity 1.

4.1 Changing Coordinates

So we want to count intersection points, but we have a tool that lets us count horizontal lines
containing intersection points. This means that we’ll be in good shape as long as each horizontal
line can only contain one intersection point. After all, that way, the two counts will be the same.
If this property fails to hold, our strategy will simply be to change our coordinate system to one
where it does hold.

You’ll explore the computational details in depth in the exercises, but in order for that to be
possible, we need to precisely describe which types of coordinate changes we’ll be using.

Definition 4.1. A linear change of coordinates on the projective plane is a transformation of
the form

x ′ = a1 x + b1 y + c1z ; y ′ = a2 x + b2 y + c2z ; z ′ = a3 x + b3 y + c3z .
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which is invertible, that is, for which it is always possible to write x , y , and z in terms of x ′, y ′,
and z ′.

Though we won’t prove this here, such a coordinate change is invertible if and only if

det





a1 b1 c1

a2 b2 c2

a3 b3 c3



 6= 0.

Given such a coordinate change, the invertibility requirement means that it will always be
possible to take any homogeneous polynomial f (x , y , z ) and write it as a function of x ′, y ′, and
z ′; I encourage you to check that this results in a polynomial that is still homogeneous and has
the same degree as f .

In addition to the possibility that two intersection points lie on the same horizontal line,
there is also one more thing the intersection points could do to ruin our plan. Our strategy
involves identifying which horizontal lines contain an intersection point, so our count will also
be off if there is an intersection point that lies on every horizontal line. If we were working in the
ordinary plane, this would not be an issue, since horizontal lines are parallel. But we’re working
in the projective plane, where there is a point that’s on every horizontal line: the point [1 : 0 : 0].

We therefore need to impose one more condition on our coordinate system. We can summa-
rize everything we need as follows:

Definition 4.2. Suppose f (x , y , z ) and g (x , y , z ) are homogeneous polynomials with no com-
mon factors. Suppose that, after performing a linear change of coordinates, we have that no
two intersection points of f and g lie on the same horizontal line, and that f (1,0,0) 6= 0 and
g (1,0,0) 6= 0. We will then say that we are working in a coordinate system that is compatible
with f and g .

(In order for [1 : 0 : 0] to not be an intersection point, it’s enough if one of f or g doesn’t
vanish there. We are imposing the stronger condition that neither vanishes there just for later
convenience; it would be possible, but more annoying, to make the proof work with the weaker
condition.) You’ll show in Exercise 4.3 that, as long as f and g have no common factors, it is
always possible to find a coordinate system that is compatible with f and g . For now, we’ll move
forward assuming that this has been accomplished.

4.2 Multiplicities and the Proof

In our example at the beginning of this section, we saw that, when we regarded our two polyno-
mials as polynomials just in the variable x and computed their resultant, we got a homogeneous
polynomial in y and z which split into linear factors, and each factor gave us one of the hori-
zontal lines that contained an intersection point. As the following two lemmas show, this will
happen in general.

Lemma 4.3. Suppose f (x , y , z ) and g (x , y , z ) are homogeneous polynomials with no common
factors, with deg( f ) = d and deg(g ) = e , and suppose f (1,0,0) 6= 0 and g (1,0,0) 6= 0. Then
Resx ( f , g ) is a nonzero homogeneous polynomial of degree d e in y and z .

Proof. We’ll start by writing f and g as polynomials in x with coefficients which are polynomials
in y and z . Let’s say

f (x ) = fd x d + · · ·+ f1 x + f0

g (x ) = ge x e + · · ·+ g1 x + g0.
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Since f (1, 0, 0) 6= 0, we also know that fd 6= 0, that is, f has degree exactly d when thought of as
a polynomial in x ; similarly, g has degree e as a polynomial in x . This, along with the assumption
that f and g have no common factors, is enough to satisfy the hypotheses of Theorem 3.11 and
allow us to conclude that Resx ( f , g ) 6= 0. 1

By Proposition 3.3, the determinant of the Sylvester matrix is a polynomial in matrix’s entries.
Since each of these entries is a polynomial in y and z , the resultant is also a polynomial in y and
z . It now just remains to show that it is homogeneous of degree d e . You’ll do this in Exercise
4.5.

Recall from Exercise 2.2d that any homogeneous polynomial f (y , z ) in two variables can be
factored completely into linear homogeneous polynomials. That is, it can be written in the form

f (y , z ) = (a1 y − b1z )(a2 y − b2z ) · · · (ad y − bd z ),

where d = deg( f ).
If we are working in a compatible coordinate system and [a : b : c ] is an intersection point of

f and g , then c y − b z = 0 is one of the horizontal lines containing an intersection point, so it
must be one of the linear factors that appears when we apply this result to Resx ( f , g ). (At least,
some constant multiple of it is — you can always factor out a constant and multiply it into one
of the other factors, but because of unique factorization this is the only change you can make.)
Unlike in the example we started this section with, after picking a compatible coordinate system
we now know that [a : b : c ]will be the only intersection point on the line c y − b z = 0. So this
will, finally, give us our definition of intersection multiplicity: the multiplicity will just be the
number of times this factor appears.

More precisely:

Definition 4.4. Suppose f (x , y , z ) and g (x , y , z ) are homogeneous polynomials with no com-
mon components, and that we are working in a coordinate system compatible with f and g . If
p = [a : b : c ] is an intersection point of f and g , then the multiplicity of p in the intersection of
f and g is the largest number m such that Resx ( f , g ) is divisible by (c y − b z )m . If p is not an
intersection point, we’ll define the multiplicity to be 0.

Notice that this definition of multiplicity only depends on the y and z coordinates of the
point, that is, it only depends on the horizontal line the point lies on. So it is really only a sensible
definition after we have imposed the restriction that no two intersection points lie on the same
horizontal line.

With all of these results in place, the proof of Bézout’s Theorem falls out pretty quickly:

Theorem 4.5 (Bézout’s Theorem, True Version). Suppose f (x , y , z ) and g (x , y , z ) are homoge-
neous polynomials with no common factors, with deg( f ) = d and deg(g ) = e . Then, in any
coordinate system compatible with f and g , the algebraic curves cut out by f and g intersect in
exactly d e points, counted with multiplicity.

1This conclusion is not quite as simple as it might seem, for a couple of reasons.
First, we’re applying Theorem 3.11 to polynomials whose coefficients are polynomials rather than numbers — the

theorem tells us that, if the resultant is zero, then f and g have a common factor, which in this context would be an
actual, three-variable polynomial that divides both f and g , which we have assumed doesn’t exist. If this step is unclear,
make sure to go back through the discussion leading up to Theorem 3.11 and convince yourself it’s still true if the
coefficients are polynomials rather than numbers!

In particular, when we proved Theorem 3.11, we relied on Theorem 3.4, which said that a system of linear equations
has a nontrivial solution if and only if the determinant of the corresponding matrix is 0. In order for Theorem 3.11 to still
be true in our present case, we need Theorem 3.4 to still be true when both the entries of the matrix and the entries of
the solution we’re looking for are polynomials. This is in fact true, although we won’t prove it here.
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Proof. Consider the resultant Resx ( f , g ). By Lemma 4.3, this is a nonzero homogeneous polyno-
mial of degree d e ; let’s write it R (y , z ). By Exercise 2.2d, it factors in the form

R (y , z ) = (a1 y − b1z )(a2 y − b2z ) · · · (ad e y − bd e z ),

where each of these factors is nonzero.
Suppose [a : b : c ] is an intersection point of f and g . This means that, if we plug y = b , z = c

into f and g , the resulting polynomials in x have a common root at x = a . So by Theorem 3.11,
we must have that R (b , c ) = 0. Because all the factors of R are nonzero, this can only happen if
one of the factors of R is (c y − b z ), up to a constant multiple. The number of times this factor
appears is, by Definition 4.4, the intersection multiplicity of our point [a : b : c ].

Conversely, if (t y − s z ) is one of the linear factors of R , we know that R (s , t ) = 0, and so by
Theorem 3.11 once again we know that f (x , s , t ) and g (x , s , t ) have a common root, say at x = r ,
which means that [r : s : t ] is an intersection point.

So, to each intersection point, we have associated m of the linear factors of R , where m is that
point’s intersection multiplicity, and we have shown that every linear factor of R is accounted
for in this way. Our count could still be off, though, if two different intersection points were
associated to the same linear factor of R . Suppose two distinct points [a : b : c ] and [a ′ : b ′ : c ′]
were assigned the same linear factor. This would mean (possibly after multiplying by a constant)
that (c y − b z ) and (c ′y − b ′z ) were the same polynomial, that is, we would have b ′ = b and
c ′ = c . But this would place our two intersection points on the same horizontal line, which we
have assumed can’t happen.

This completes the proof: there are d e linear factors; each intersection point accounts for m
of them, where m is its multiplicity; and every intersection point is included in this count. So
the sum of the multiplicities must be exactly d e .

At long last, we’ve finished the goal we set out in the introduction: after modifying the
statement to account for all the problems we identified with the first version, we have succeeded
in turning Bézout’s Theorem into something we can prove,

But there is one potentially unsatisfying aspect of our setup that has to do with our definition
of intersection multiplicities. We defined the intersection multiplicity of f and g at a point p by
first picking a compatible coordinate system and then computing Resx ( f , g ) in that coordinate
system. How do we know that, if we had picked a different (but still compatible) coordinate
system, we would have gotten the same number out as our multiplicity?

This is, in fact, a big weakness of the resultant-based approach to defining intersection
multiplicities, and if you ever go on to study this topic in an algebraic geometry class you will
probably use a definition of intersection multiplicity that doesn’t have this problem of seeming
to depend on the choice of coordinates. Still, it is possible to solve it, and this will be tackled in
the optional Section A.

Exercises

Exercises that are especially important for the rest of the class have been marked with ".

4.1. In Exercise 2.1 you found the intersection points of the parabola y − x 2 = 0 and the vertical
line x −a = 0. Using the techniques from this section, find the intersection points again
and compute their multiplicities.
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4.2. Consider the circle x 2+ y 2− y = 0 and the ellipse x 2− x y + y 2− y = 0. Use the techniques
from this section to find all the intersection points of these two curves in the projective
plane and their multiplicities. [Hint: The resultant you get after homogenizing should be
y 4− y 3z . If you don’t feel like computing a 4×4 determinant, feel free to just assume this
and solve the problem from there.]

4.3. "Let f (x , y , z ) and g (x , y , z ) be non-constant homogeneous polynomials with no com-
mon factors. In this problem, we’ll show that there is a coordinate system compatible with
f and g .

(a) Show that, for any point p in the projective plane and any line L containing p , there
is a linear change of coordinates that takes p to [1 : 0 : 0] and L to the line y = 0. [Hint:
First show that, for any point q on L other than p , there is a change of coordinates
taking [1 : 0 : 0] to p and [0 : 0 : 1] to q . Then show that the inverse of this change of
coordinates works.]

(b) Using a similar argument, show that there is a coordinate change we can perform
after which neither curve contains [1 : 0 : 0] or [0 : 1 : 0]. [Hint: Exercise 1.4 might be
helpful.]

(c) Suppose we have performed the coordinate change from part (b). Prove that there
are only finitely many horizontal lines and finitely many vertical lines which contain
intersection points of f and g . Conclude that there are finitely many intersection
points. (A horizontal line is a line that contains [1 : 0 : 0], and a vertical line is a line
that contains [0 : 1 : 0].) [Note: You can’t use Bézout’s Theorem for this, since the fact
we’re proving in this problem is part of our proof of Bézout’s Theorem! Instead use
some of the facts we proved about resultants in this section.]

(d) Prove that there exists a line L with the following two properties: (i) no line parallel
to L contains two distinct intersection points of f and g , and (ii) L is not completely
contained in the union of our two curves. [Hint: You might find some of the exercises
from Section 1 helpful.]

(e) Prove that there is a point p on L which is not on either of our two curves, and that if
you apply the coordinate change from part (a) to this choice of p and L the resulting
coordinate system is compatible with f and g .

4.4. In our definition of compatible coordinate systems, we asked that f (1,0,0) and g (1,0,0)
be nonzero. We ended up using this in the proof of Lemma 4.3 in order to satisfy one of
the hypotheses of Theorem 3.11.

It would in fact be possible to do this whole proof just assuming one of f or g is nonzero at
[1 : 0 : 0]. But what goes wrong if we both f and g vanish at [1 : 0 : 0]? Specifically, what do
the Sylvester matrix and the resultant look like if f (1, 0, 0) = g (1, 0, 0) = 0, and how does this
line up with the answer to the question about what horizontal lines contain intersection
points?

4.5. "In this exercise, we’ll verify the degree count in Lemma 4.3. As in the lemma, we will
start with two homogeneous polynomials f (x , y , z ) and g (x , y , z ), with deg( f ) = d and
deg(g ) = e . We are thinking of f and g as polynomials in x with coefficients that are
polynomials in y and z and taking the resultant. Again as in the lemma, let’s write

f (x ) = fd x d + · · ·+ f1 x + f0

g (x ) = ge x e + · · ·+ g1 x + g0.
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(a) Argue that each fi is homoegeneous of degree d − i and each g j is homogeneous of
degree e − j .

(b) Write ci j for the entry in the Sylvester matrix on row i and column j . Show that, if
ci j 6= 0, then it’s a homogeneous polynomial of degree d + j − i if j ≤ e and degree
j − i if j > e .

(c) Recall from Proposition 3.3 that each term in the determinant of this matrix is a
product of matrix entries, with exactly one from each row and each column. Let’s
focus on just one such term now. Let σ( j ) be the row of the entry we’re choosing
from column j . Prove that our term is a homogeneous polynomial of degree

e
∑

j=1

(d + j −σ( j ))+
e+d
∑

j=e+1

( j −σ( j )).

(d) Finally, argue that this sum is always equal to d e , and conclude that the entire
resultant is therefore a homogeneous polynomial of degree d e . [Hint: It will be
helpful to remember that, as j ranges from 1 to d + e ,σ( j ) takes on each value from 1
to d + e exactly once.]
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A Coordinate Changes and Multiplicities
When we finished our proof of Bézout’s Theorem we were left with one unsatisfying detail: our
definition of intersection multiplicity required us to pick a coordinate system compatible with
our two curves, but we never established that the number we got out as the multiplicity was
actually independent of this choice. In this section, we’ll close this loophole.

Our strategy will be to describe intersection multiplicities in terms of a list of axioms that
don’t depend on the coordinate system. If we can show that these axioms uniquely specify
the intersection multiplicity and that our definition satisfies them, we’ll have our result. As a
bonus, in addition to giving us our coordinate-independence, this will also provide a nice way
to compute intersection multiplicities without having to take determinants of gigantic matrices.

Definition A.1. Let mp ( f , g ) be a function which takes two homogeneous polynomials f (x , y , z )
and g (x , y , z )with no common factors, along with a point p in the projective plane, and returns
a nonnegative integer. We will say that m satisfies the intersection multiplicity axioms if it has
all of the following properties:

(i) mp ( f , g ) =mp (g , f )

(ii) mp ( f , g ) = 0 if and only p isn’t an intersection point of f and g

(iii) if f and g are lines and p is their intersection point, then mp ( f , g ) = 1

(iv) mp ( f1 f2, g ) =mp ( f1, g ) +mp ( f2, g )

(v) if deg( f )≤ deg(g ) and h is another homogeneous polynomial with deg(h ) = deg(g )−deg( f ),
then mp ( f , g − f h ) =mp ( f , g ).

Theorem A.2. The intersection multiplicity axioms uniquely determine the function m, and the
intersection multiplicity defined in Definition 4.4 satisfies the intersection multiplicity axioms.

Proof. We will start by showing that the axioms uniquely determine m . Given f , g , and p , our
strategy will be to repeatedly use (iv) and (v) to reduce the degrees of f and g until we can apply
(ii) or (iii) to compute the multiplicity.

Since all of our axioms are indepedent of our choice of coordinates, we can change coordi-
nates so that p = [0 : 0 : 1].

Suppose we are given f , g , and p . Our proof will proceed by induction on a somewhat odd
quantity: the sum of the highest power of y appearing in f and the highest power of y appearing
in g . (For example, the highest power of y appearing in x 4+3x y z 2+2x y 2z is 2.) In the base
case, there are no y ’s in either f or g , so they are both homogeneous polynomials in just x and
z . By Exercise 2.2d, this means they can both be written as a product of linear homogeneous
polynomials, and I encourage you to verify that our axioms are enough to handle that case.

Now, suppose we do have some y ’s in f or g , but that we know that our axioms uniquely
determine m whenever our quantity is strictly smaller than it is for f and g . Our first task will
be to repeatedly apply (v) to cancel terms until one of the polynomials is a multiple of y , after
which we will be able to use (iv) to lower the power of y in that polynomial.

A homogeneous polynomial will fail to be a multiple of y if it has a term of the form c x a z b .
Let r be the biggest power of x in a term of this form in f , and let s be the biggest power of
x in a term of this form in g . After multiplying f and g by constants, we can assume that the
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coefficients of both of these terms are 1. And, after possibly using (i) to switch f and g , we can
assume r ≤ s .

Suppose r > 0. We are then aiming to build a polynomial out of f and g in which the smallest
power of x appearing in a term of the form x a z b is strictly smaller than s . I encourage you to
convince yourself that

h = z deg( f )+s−r g − x s−r z deg(g ) f

does the job. By (v), we have that mp ( f , h ) =mp ( f , z deg( f )+s−r g ), and by (iv) and (ii), this is equal
to mp ( f , g ) (since z doesn’t vanish at p = [0 : 0 : 1]). So, if we replace g with h , we have decreased
s without changing the intersection multiplicity.

We can apply this procedure over and over again, lowering r or s each time, until one of
them is 0. Note also that we never increase the power of y appearing in either polynomial, so
our induction is safe.

Suppose now that we have done this and that r = 0. Then the only term in f that might not
contain a y is z deg( f ). But we also know that f (0, 0, 1) = 0, which means that in fact the coefficient
on z deg( f ) has to be zero. So, in this case, f is a multiple of y , say f = y ef . By (iv), we then know
that mp ( f , g ) =mp ( ef , g ) +mp (y , g ). Our induction hypothesis handles the first term, so we just
need to take care of the second.

To do this, write g in the form

g (x , y , z ) = g1(x , z ) + y g2(x , y , z ).

That is, split off all the terms of g containing a y and call that y g2. By (v) once again, we know
that mp (y , g ) = mp (y , g1). But now g1 is a homogeneous polynomial in x and z , and so by
Exercise 2.2d it’s a product of linear homogeneous polynomials. Applying (iv) to this tells us that
mp (y , g1) is a sum of terms of the form mp (y , t x +u z ), and by (iii), these are all equal to 1.

This completes the proof of uniqueness. We now have to show that the intersection mul-
tiplicity as we defined it in the last section satisfies our axioms. This will be handled in the
exercises.

Exercises

These exercises will be all about establishing that our resultant-based definition of intersection
multiplicities from Definition 4.4 satisfies the axioms in this section. The axioms will all turn out
to correspond to some basic facts about resultants which we could have proved shortly after
defining them. These facts will, in turn, depend on knowing a few facts about how to compute
determinants that didn’t come up anywhere else in our discussion; I will indicate what these are
when we need them.

Throughout this discussion, unless stated otherwise, f and g will be homogeneous polyno-
mials in the variables x , y , and z , and we are working in a coordinate system which is compatible
with f and g .

A.1. Prove that Resx ( f , g ) =±Resx (g , f ), and conclude that (i) is satisfied. [Hint: Use the fact
that interchanging two columns of a matrix multiplies its determinant by −1.]

A.2. Definition 4.4 already states directly that if p isn’t an intersection point of f and g then
the multiplicity is 0. Prove the other direction of (ii) by verifying that the multiplicity is
positive if p is an intersection point.

A.3. Prove (iii) by directly computing the determinant of the Sylvester matrix in this case.
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A.4. (a) Suppose that f and g are one-variable (non-homogeneous) complex polynomials,
and that we have factored them as

f (x ) = c (x −α1) · · · (x −αm ); g (x ) = c ′(x −β1) · · · (x −βn ).

Prove that, for some constant K ,

Res( f , g ) = K
m
∏

i=1

n
∏

j=1

(αi −β j ).

[Hint: Think of f and g as homogeneous polynomials in x ,α1, . . . ,αm ,β1, . . . ,βn , apply
Lemma 4.3, and observe what happens when you plug in αi =β j for some i , j .]

(b) Conclude that, if f , g , and h are one-variable polynomials,

Res( f , g h ) = L Res( f , g )Res( f , h )

for some constant L . (This constant is in fact 1, but this is a bit harder to prove.)

(c) Argue that this must then also be true if f , g , and h are multi-variable polynomials
and we replace Res with Resx .

(d) Conclude that (iv) is satisfied.

A.5. Prove that, if deg( f )≤ deg(g ) and h is a homogeneous polynomial with deg(h ) = deg(g )−
deg( f ), then Resx ( f , g − f h ) =Resx ( f , g ) and conclude that (v) is satisfied.2 [Hint: Use the
fact that adding a multiple of one column of a matrix to another column doesn’t change the
determinant.]

2There is a subtlety here which the wording of this question glosses over: even if our coordinate system is compatible
with f and g , it doesn’t necessarily follow that it’s compatible with f and g − f h . Resolving this requires showing that
everything we’ve done only requires one of f or g to not contain [1 : 0 : 0]. You can, if you’d like, treat resolving this issue
as an optional extra exercise. It will require modifying Lemma 3.9 to allow one (but not both) of f or g to have smaller
than r or s respectively.
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