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The Lagrangian Approach to General
Relativity

Nic Ford

1 Introduction
This article is a supplement to another article on general relativity, which I wrote as part of my
series on physics formathematicians. We’ll be discussing general relativity from the perspective
of Lagrangianmechanics, a point of view I intentionally neglected in themain article.

The Lagrangian perspective is quite a bitmore abstract, so I don’t think it’s the best approach
to take when learning the subject for the first time. But if you have some sense of the shape of
the theory in your head already, I think it can be a great way to clarify some of the conceptual
underpinnings of the subject. In particular, while it’s not in any way a prerequisite for the
discussion we’re about to have here, if you read and enjoyed “Electromagnetism as a Gauge
Theory” from this series, my hope is that you’ll like this one as well.

As far as prerequisites, it will be helpful to have some exposure to general relativity already
— having readmy article should be fine— and to understand how the Lagrangian approach
to physics works in classical mechanics. We will be using the abstract index notation that was
introduced in themain article, so if you don’t know or don’t remember how that works it might
be useful to review it there.

This piece has two main goals. After a quick overview of how to extend the Lagrangian
mechanics machinery to cover field theories in curved spacetime, we’ll discuss how to express
general relativity in the Lagrangian language— the Lagrangian which reproduces Einstein’s
equation is surprisingly concise, and it offers a useful perspective on the theory. We’ll move
from there to a discussion of an issue which I got somewhat stuck on when learning the theory:
the relationship between the concept of energy-momentum as it appears in Einstein’s equation
and the concept as it appears in non-gravitational physics. I hope I can give an explanation that
will prevent you from getting as confused about this point as I was.

In addition to the books cited in themain article, there are a couple of sources worthmen-
tioning specifically for this supplement.

• Thediscussionon the relationshipbetween thegravitational and inertial energy-momentum
tensors is based on the first few pages of an article called “Canonical Pseudotensors, Spar-
ling’s Form, andNoether Currents” by László B. Szabados, which ismostly about the some-
what related topic of howonemight define a quantity to represent the energy-momentum
of the gravitational field itself.

• A very similar computation is also done in an article called “On the Energy-Momentum
Tensor” by Ricardo E. Gamboa Saraví.

https://nicf.net/articles/general-relativity/
https://nicf.net/articles/physics-for-mathematicians
https://nicf.net/articles/classical-em/
https://nicf.net/articles/classical-em/
http://www.rmki.kfki.hu/~lbszab/doc/sparl11.pdf
http://www.rmki.kfki.hu/~lbszab/doc/sparl11.pdf
https://arxiv.org/abs/math-ph/0306020
https://arxiv.org/abs/math-ph/0306020
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• Our discussion of the two energy-momentum tensors will be limited to the case of ten-
sor fields coupled to gravity. The paper “Stress-Energy-Momentum Tensors and the
Belinfante–Rosenfeld Formula” byMark J. Gotay and Jerrold E. Marsden generalizes the
procedure we’ll be discussing to cover essentially any situation in which diffeomorphisms
of spacetime can bemade to act on the fields.

I’m grateful to Jordan Watkins for helpful comments on an earlier draft, and many very
helpful conversations on this topic.

2 Lagrangians in Curved Spacetime
We’ll start with a quick overview of how Lagrangianmechanics works for field theories in curved
spacetime. While it is possible to set everything up in a very pleasingly coordinate-free way,
I’m going to skip doing that here, since it doesn’t add enough to the discussion to be worth
taking the time, opting instead for the weaker promise to write everything in such a way that it
is usually not too difficult to translate each expression to its coordinate-free version. (I plan to
return to the coordinate-free presentation in a future article in this series.)

2.1 Fields and Lagrangians
So, throughout this discussion, we’ll imagine that we’re working on a local coordinate patch
𝑈 on a smooth oriented manifold𝑀 with coordinates 𝑥1, . . . , 𝑥𝑛 . The manifold𝑀 is meant
to represent spacetime, so in most physical applications, 𝑛 will be 4. Because we’re about to
apply this to general relativity, we’ll assume𝑀 comes equipped with ametric 𝑔𝑎𝑏 , although for
now we will simply take the metric to be fixed in advance rather than arising from Einstein’s
equations.

The history of the physical system we’re modeling will be described by sections of some
smooth fiber bundle 𝜋 : 𝐸 → 𝑀 . These sections are often called fields. A couple popular
choices for 𝐸 are𝑀 ×R (giving us a scalar field) or the tangent bundle𝑇𝑀 (giving us a vector
field). The bundle 𝐸 doesn’t necessarily have to be a vector bundle in general, although it will
be for us. It’s also common for 𝐸 to be a product of several different bundles, and in this case we
think of each of the bundles in the product as corresponding to a different field.

For the purposes of this article, though, we’ll be specializing to the case of a single tensor
field. This means, using the terminology and notation from themain article, that 𝐸 is the (𝑟 , 𝑠 )-
tensor bundle𝑇 𝑟

𝑠 𝑀 . The coordinates on our patch𝑈 will then let us put coordinates on the
fibers of 𝐸 as well, which we could write 𝑦𝑎1 · · ·𝑎𝑟

𝑏1 · · ·𝑏𝑠 . For the sake of readability we’ll usually pack
all of those indices into a “multi-index” 𝐴, writing an arbitrary coordinate simply as 𝑦𝐴 and
only expanding this out when absolutely necessary. (Despite appearing as a superscript, the
multi-index 𝐴 is meant to stand in for both the upper and lower indices of an (𝑟 , 𝑠 )-tensor.)

As in classical mechanics, the laws of physics will be specified in terms of a Lagrangian,
which is a real-valued function that depends on the values and derivatives of a section at a given
point. In principle one could allow the Lagrangian to dependon the derivatives of a sectionup to
𝑘 ’th order for some large 𝑘 , but for simplicity we’ll mostly restrict to the case of first derivatives.
In our present context, where our spacetime comes equipped with an arbitrary metric, these
should be covariant derivatives, since this will make it easier tomake sure the expression for
the Lagrangian respects the symmetries of general relativity.

https://www.cds.caltech.edu/~marsden/bib/1992/05-GoMa1992/
https://www.cds.caltech.edu/~marsden/bib/1992/05-GoMa1992/
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In other words, we’ll think of our Lagrangian as a function of the form 𝐿 (𝑥𝑎 , 𝑦𝐴 , 𝑣𝐴𝑎 ). (In an
expression like this, think of 𝑥𝑎 or 𝑦𝐴 as standing in for all the possible coordinates of that form.)
The 𝑥𝑎 ’s are coordinates on the base𝑀 , the 𝑦𝐴 ’s are coordinates in the fiber, and the 𝑣𝐴𝑎 ’s are
coordinates which represent the derivatives of a section of 𝐸 , in a way we’ll nowmake precise.

In the coordinate-free version of this story, the 𝑥𝑎 ’s, 𝑦𝐴 ’s, and 𝑣𝐴𝑎 ’s would be coordinates on
the first jet bundle of 𝐸 , written 𝐽 1𝐸 . (Because we’ve restricted ourselves to a coordinate patch,
we don’t actually need a global definition of this object, and I will in fact hold off on this until
the promised future article. For nowwe will content ourselves with the local description we’ve
already given.) Given any section 𝜙 : 𝑀 → 𝐸 , we can produce a section 𝑗 1𝜙 : 𝑀 → 𝐽 1𝐸 called
the first jet prolongation of 𝜙 by setting

𝑗 1𝜙 (𝑥) = (𝑥, 𝜙𝐴 (𝑥),∇𝑎𝜙𝐴 (𝑥)).

As a quick example, if we had𝑀 = R2 with the standard coordinates 𝑥1, 𝑥2 and 𝐸 = 𝑇 2
0 𝑀 ,

then the total space of 𝐸 would be 6-dimensional, with coordinates 𝑥1, 𝑥2, 𝑦 11, 𝑦 12, 𝑦 21, 𝑦 22. The
total space of the jet bundle 𝐽 1𝐸 would then be 14-dimensional: the bundle 𝐽 1𝐸 → 𝐸 has
8-dimensional fibers, with coordinates 𝑣 𝑖 𝑗

𝑘
for all choices of 𝑖 , 𝑗 , 𝑘 from {1, 2}, and the bundle

𝐽 1𝐸 → 𝑀 has 10-dimensional fibers.
We’ll often have occasion to talk about covariant derivatives of partial derivatives of 𝐿 , so it’s

worth taking amoment to be clear about what such expressionsmean. Suppose for simplicity
that we just have one (𝑟 , 𝑠 )-tensor field so that 𝐸 = 𝑇 𝑟

𝑠 𝑀 . Given any section 𝜙 (𝑥) = (𝑥, 𝜙𝐴 (𝑥)),
I encourage you to convince yourself that

𝜕𝐿

𝜕𝑦𝐴
(𝑥, 𝜙𝐴 (𝑥),∇𝑎𝜙𝐴 (𝑥))

should naturally be thought of as an (𝑠 , 𝑟 )-tensor: the natural way to get a number out of it is to
pair it with an (𝑟 , 𝑠 )-tensor, thought of as a tangent vector at 𝜙 (𝑥) in the fiber of 𝐸 . When we
write expressions like ∇𝑎 (𝜕𝐿/𝜕𝑦𝐴), we will thereforemean the covariant derivative of 𝜕𝐿/𝜕𝑦𝐴
thought of as an (𝑠 , 𝑟 )-tensor. Similarly,

𝜕𝐿

𝜕𝑣𝐴𝑎
(𝑥, 𝜙𝐴 (𝑥),∇𝑎𝜙𝐴 (𝑥))

is naturally an (𝑠 + 1, 𝑟 )-tensor.
In the physics literature, you will usually see 𝜕𝐿/𝜕𝜙𝐴 for what I’m calling 𝜕𝐿/𝜕𝑦𝐴 , and

𝜕𝐿/𝜕(∇𝑎𝜙𝐴) for what I’m calling 𝜕𝐿/𝜕𝑣𝐴𝑎 . These expressions (especially the second one) are a
common source of confusion for people learning this theory for the first time, so I’mdeliberately
avoiding them, but it’s worth knowing the standard notation in case you encounter it elsewhere.

2.2 The Euler–Lagrange Equations
Just as in classical mechanics, specifying a Lagrangian determines the laws of physics that our
fields have to satisfy via an action principle, in the following way. Given any compact region of
spacetime𝐷 ⊆ 𝑀 and any section 𝜙 , we’ll define the action to be the quantity

𝑆𝐷 [𝜙] =
∫
𝐷

𝐿 (𝑗 1𝜙 (𝑥))𝜔𝑔 ,

where 𝜔𝑔 is the volume form on𝑀 arising from ourmetric 𝑔𝑎𝑏 . We’ll define a variation of 𝜙 on
𝐷 to be a one-parameter family of sections 𝜙𝑢 such that 𝜙0 = 𝜙 and every 𝜙𝑢 = 𝜙 on 𝜕𝐷 .
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We then declare that the physically realizable field histories 𝜙 are the ones with the property
that, for every compact region𝐷 and every variation 𝜙𝑢 on𝐷 , we have

𝑑

𝑑𝑢
𝑆𝐷 [𝜙𝑢 ]

����
𝑢=0

= 0.

When we have a variation inmind, we will follow the common convention in physics of writing
𝛿 for (𝑑/𝑑𝑢) |𝑢=0 and omitting the subscript𝑢 on other expressions whenwe do so. For example,
𝛿𝜙𝐴 means (𝑑/𝑑𝑢) (𝜙𝑢 )𝐴 |𝑢=0, and the condition on the action just described can be written
“𝛿𝑆𝐷 = 0.”

As in classical mechanics, it’s possible to rewrite this condition in a way which doesn’t refer
to variations. Suppose we have a 𝜙 which satisfies our condition. Then, for every region𝐷 and
every variation 𝜙𝑢 on𝐷 , we have

0 = 𝛿𝑆𝐷 =

∫
𝐷

(
𝜕𝐿

𝜕𝑦𝐴
𝛿𝜙𝐴 + 𝜕𝐿

𝜕𝑣𝐴𝑎
𝛿 (∇𝑎𝜙𝐴)

)
𝜔𝑔 .

(The derivatives of 𝐿 are still being evaluated at 𝑗 1𝜙 (𝑥).) The derivatives with respect to𝑢 and
𝑥𝑎 commute, so 𝛿 (∇𝑎𝜙𝐴) = ∇𝑎 (𝛿𝜙𝐴). We can therefore write

0 =

∫
𝐷

(
𝜕𝐿

𝜕𝑦𝐴
𝛿𝜙𝐴 + 𝜕𝐿

𝜕𝑣𝐴𝑎
∇𝑎 (𝛿𝜙𝐴)

)
𝜔𝑔

=

∫
𝐷

(
𝜕𝐿

𝜕𝑦𝐴
− ∇𝑎

𝜕𝐿

𝜕𝑣𝐴𝑎

)
𝛿𝜙𝐴𝜔𝑔 +

∫
𝐷

∇𝑎
(
𝜕𝐿

𝜕𝑣𝐴𝑎
𝛿𝜙𝐴

)
𝜔𝑔 .

The second integral is a covariant divergence integrated against the volume form. By the
covariant-derivative analogue of the divergence theorem, this is equal to an integral on the
boundary 𝜕𝐷 , which vanishes because 𝛿𝜙𝐴 is zero there. We’re left with just the first integral. In
order for this integral to vanish for all possible choices of region𝐷 and variation 𝛿𝜙𝐴 , wemust
have that

EL𝐴 (𝜙) :=
𝜕𝐿

𝜕𝑦𝐴
(𝑗 1𝜙 (𝑥)) − ∇𝑎

(
𝜕𝐿

𝜕𝑣𝐴𝑎
(𝑗 1𝜙 (𝑥))

)
= 0

for all 𝐴. These are called the Euler–Lagrange equations.

2.3 Noether Currents
Another piece of the classical-mechanical Lagrangian story that generalizes nicely to this setting
is the relationship between infinitesimal symmetries and conserved quantities fromNoether’s
Theorem.

There are a few ways to formalize these ingredients, and we’re going to go through just
one. We’ll say that an infinitesimal transformation of sections of 𝐸 is a smooth function
𝑤𝐴 (𝑥𝑎 , 𝑦𝐴 , 𝑣𝐴𝑎 ) which returns a vertical tangent vector at (𝑥𝑎 , 𝑦𝐴) ∈ 𝐸 . (Recall that a tangent
vector𝑣 at a point 𝑒 ∈ 𝐸 is vertical if𝜋∗𝑣 = 0 in𝑇𝜋 (𝑒 )𝑀 .) In other words,𝑤𝐴 takes in information
about the value and derivative of a section at a point 𝑥 , and it tells you a direction in which
to push the value of the section at that same point. By starting with a section 𝜙 and flowing
along𝑤𝐴 , we can produce a continuous transformation of 𝜙 , that is, a one-parameter group of
sections 𝜙𝑢 (𝑥) = (𝑥, (𝜙𝑢 )𝐴 (𝑥)) such that

𝑑

𝑑𝑢
(𝜙𝑢 )𝐴 (𝑥) = 𝑤𝐴 (𝑗 1𝜙𝑢 (𝑥)).
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To head off a confusion I had when encountering this for the first time, while it looks like
the requirement that𝑤𝐴 be vertical would prevent us from considering things like spacetime
translations, this is not actually the case. If, for example, 𝑋 𝑎 is a vector field on our spacetime
𝑀 , then flowing sections along 𝑋 𝑎 is the continuous transformation that arises when we set
𝑤𝐴 = L𝑋𝜙

𝐴 whereL denotes the Lie derivative. Lie derivatives of tensor fields only depend on
the first derivatives of the field, so we can express the right side as a function of 𝑥𝑎 , 𝑦𝐴 , and 𝑣𝐴𝑎 as
required.

In order tomake Noether’s Theoremwork, we’ll need a formal definition of an “infinitesimal
symmetry” of a Lagrangian system: we want a condition we can impose on 𝑤𝐴 which will
imply that the corresponding continuous transformation takes solutions of the Euler–Lagrange
equation to solutions. A natural first guess might be that we should call𝑤𝐴 an infinitesimal
symmetry whenever the continuous symmetry preserves the Lagrangian, that is, whenever for
any section 𝜙 we have (𝑑/𝑑𝑢)𝐿 (𝑗 1𝜙𝑢 (𝑥)) = 0 for all 𝑥 , where 𝜙𝑢 is the one-parameter group of
sections we just defined.

In fact, this turns out to be too restrictive — for example, this won’t be true for spatial
translations in situationswhere that is a symmetry of thephysical system. Luckily, as I encourage
you to verify, it’s enough if (𝑑/𝑑𝑢)𝐿 (𝑗 1𝜙𝑢 (𝑥)) is a total divergence, that is, if there’s a smooth
function 𝐹 𝑎 (𝑥𝑎 , 𝑦𝐴 , 𝑣𝐴𝑎 ) returning a tangent vector at 𝑥𝑎 ∈ 𝑀 such that

𝑑

𝑑𝑢
𝐿 (𝑗 1𝜙𝑢 (𝑥)) = ∇𝑎 (𝐹 𝑎 (𝑗 1𝜙𝑢 (𝑥))).

This is equivalent to requiring

𝜕𝐿

𝜕𝑦𝐴
𝑤𝐴 + 𝜕𝐿

𝜕𝑣𝐴𝑎
(∇𝑎𝑤𝐴) = ∇𝑎𝐹 𝑎 .

(Although we’ve stopped including it in the notation, all of these functions are still being eval-
uated at 𝑗 1𝜙 (𝑥)!) When this happens, we’ll call𝑤𝐴 an infinitesimal symmetry and the corre-
sponding continuous transformation a continuous symmetry.

From this perspective, Noether’s Theorem is quite simple to prove. Observe that, when𝑤𝐴

is an infinitesimal symmetry, we have

0 =
𝜕𝐿

𝜕𝑦𝐴
𝑤𝐴 + 𝜕𝐿

𝜕𝑣𝐴𝑎
(∇𝑎𝑤𝐴) − ∇𝑎𝐹 𝑎

= EL𝐴 (𝜙)𝑤𝐴 + ∇𝑎
(
𝜕𝐿

𝜕𝑣𝐴𝑎
𝑤𝐴 − 𝐹 𝑎

)
.

Inspired by this, let’s define theNoether current corresponding to our symmetry𝑤 𝐼 to be

𝐽 𝑎 = 𝐹 𝑎 − 𝜕𝐿

𝜕𝑣𝐴𝑎
𝑤𝐴 .

What we’ve just shown is that, if you take a solution 𝜙 of the Euler–Lagrange equations and plug
in its values and derivatives as the 𝑦𝐴 ’s and 𝑣𝐴

𝑖
’s, then we’ll have ∇𝑎 𝐽 𝑎 = 0. In other words, 𝐽 𝑎

will be a conserved current in the sense discussed in themain article.
It’s important to note here that this procedure does not actually uniquely define 𝐽 𝑎 — if 𝐽 𝑎

satisfies ∇𝑎 [𝐽 𝑎 (𝑗 1𝜙 (𝑥)) − 𝐽 𝑎 (𝑗 1𝜙 (𝑥))] = 0 for all sections 𝜙 , then 𝐽 𝑎 will be an equally valid
conserved current, and nothing about what we just did gives us a way to distingish between
them. (Indeed, the same ambiguity arises in the the definition of 𝐹 𝑎 .) When two currents 𝐽 𝑎 and
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𝐽 𝑎 are related in this way, we’ll call them equivalent, and for this reason, it is probably better to
talk aboutaNoether current corresponding to a given symmetry rather than theNoether current.
In particular, if you integrate 𝐽 𝑎 or 𝐽 𝑎 over a spacelike hypersurface to produce a conserved
scalar quantity, the result will be the same. This will turn out to be important when we discuss
the various ways to interpret the energy-momentum tensor.

As mentioned above, there are a few other choices one couldmake in the process of formal-
izing all this. One that youmight see in the literature (including in the Gotay–Marsden paper
mentioned in the introduction) is to remove the requirement that𝑤𝐴 be a vertical vector, that
is, allowing our infinitesimal transformations to also point in spacetime directions. In order for
the corresponding continuous transformation to still take sections of 𝐸 to sections, we need to
amend the action on sections a bit to drag each point of 𝐸 back to the fiber where it belongs.
This makes some symmetries a bit easier to write down, at the cost of making the formula for 𝐽 𝑎
a bit more complicated.

3 The Einstein–Hilbert Action
In general relativity, gravity is described in terms of themetric 𝑔𝑎𝑏 on our spacetime𝑀 , which
we “promote” into a dynamical variable. That is, rather than think of the metric as simply a part
of the specification of our background spacetime𝑀 , we treat it as one of the quantities that we
are interested in solving for, just like the fields.

Given the framework we just laid out, this suggests that we need to include themetric in our
Lagrangian somehow, and to require the derivative of the action to vanish under variations of
both themetric and the fields. This requires a couple of small changes to our setup. First, in our
previous discussion, the Lagrangian could depend on themetric indirectly via its dependence
on the point 𝑥 ∈ 𝑀 . But now that the metric is a dynamical variable we’re going to need to
include it explicitly as a parameter. Second, we’ll need to find a Lagrangian involving only the
metric which we can add on to the Lagrangian for matter and which will produce Einstein’s
equation as one of the Euler–Lagrange equations. (If you read “Electromagnetism as a Gauge
Theory,” it might be interesting to compare what we’re about to do to the way electromagnetism
was incorporated into the Lagrangian in that context.)

Our action will therefore take the form

𝑆𝐷 [𝜙𝐴 , 𝑔𝑎𝑏 ] = (𝑆𝑚)𝐷 [𝜙𝐴 , 𝑔𝑎𝑏 ] + (𝑆𝐸𝐻 )𝐷 [𝑔𝑎𝑏 ].

The𝑚 stands for “matter,” and 𝑆𝑚 is an action of the same type that we were considering in the
previous section, except with any dependence on themetric now occuring through themetric’s
status as a parameter to the Lagrangian. The second term is called the Einstein–Hilbert action,
and it takes a remarkably simple form: the action that reproduces Einstein’s equation turns out
to be

(𝑆𝐸𝐻 )𝐷 [𝑔𝑎𝑏 ] =
1

16𝜋𝐺

∫
𝐷

𝑅𝜔𝑔 ,

where 𝑅 is the scalar curvature of themetric and 𝜔𝑔 is, as it was above, the volume form.
This action doesn’t quite fit into our earlier framework for a couple of reasons. First, the

curvature of a metric actually depends on its second derivatives, whereas the Lagrangians we
considered earlierwere only allowed to dependonfirst derivatives. Wedid this for simplicity, but
there is actually no reason that one couldn’t run exactly the same arguments with a Lagrangian
that depends on derivatives up to any fixed order; the logic is essentially unchanged, but the

https://nicf.net/articles/classical-em/
https://nicf.net/articles/classical-em/
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formulas for the Euler–Lagrange equations and the Noether current are a bit more complicated.
(The Szabados paper mentioned in the introduction goes into this a bit.) Second, all covariant
derivatives of themetric are zero, and so it would not make sense to use them as parameters. To
address both of these concerns, we can think of the integrand in the Einstein–Hilbert action
as a function of 𝜕𝑐 𝑔𝑎𝑏 and 𝜕𝑐𝜕𝑑 𝑔𝑎𝑏 , the first and second partial derivatives of themetric in our
chosen coordinate system.

By the linearity of partial derivatives, in order to check that the derivative of the action is zero
under simultaneous variations of the fields and themetric, it’s enough to consider variations of
the fields and variations of themetric separately. When we vary just the fields, the variation of
the Einstein–Hilbert action vanishes, and so we are back in the situation we considered in the
previous section. The resulting Euler–Lagrange equations will therefore be exactly the same as
the ones we would have gotten if we had thought of our system as living in a spacetime with a
fixedmetric.

Varying the metric is more interesting. We can’t just throw everything into our formula
for the Euler–Lagrange equation, because the dependence of the action on 𝑔𝑎𝑏 doesn’t take
the form we assumed when we derived it. In addition to the issues involving the derivatives
of themetric that we just discussed, there is also the fact that the covariant derivatives ∇𝑎𝜙𝐴

themselves depend on themetric, as does the volume form 𝜔𝑔 .
To mimic the proof of the Euler–Lagrange equations in this new context, we would want

to find some function 𝛿𝑆/𝛿 𝑔𝑎𝑏 depending on the values and derivatives of the fields and the
metric such that, for any region𝐷 and any variation (𝑔𝑢 )𝑎𝑏 of themetric on𝐷 , we have

𝛿𝑆𝐷 =

∫
𝐷

𝛿𝑆

𝛿 𝑔𝑎𝑏
(𝛿 𝑔𝑎𝑏 )𝜔𝑔 .

(Recall that 𝛿 refers to the derivative with respect to𝑢 .) We would then be able to conclude, just
like in our proof of the Euler–Lagrange equations, that if 𝛿𝑆𝐷 = 0 for all such variations, then
𝛿𝑆/𝛿 𝑔𝑎𝑏 = 0.

Such a 𝛿𝑆/𝛿 𝑔𝑎𝑏 , when it exists, is called the functional derivative of 𝑆𝐷 with respect to
𝑔𝑎𝑏 . (The notation is meant to be reminiscent of the formula 𝑑 𝑓 =

∑𝑛
𝑖=1 (𝜕𝑓 /𝜕𝑥𝑖 )𝑑𝑥𝑖 for a real-

valued function 𝑓 onR𝑛 . Note also that, using this notation, we could write the Euler–Lagrange
expression from the last section simply as EL𝐴 (𝜙) = 𝛿𝑆/𝛿𝜙𝐴 .) Assuming that the functional
derivatives of both thematter andEinstein–Hilbert actions exist and thatwe are able to compute
them, we could write the resulting equations of motion in the form

𝛿𝑆𝐸𝐻

𝛿 𝑔𝑎𝑏
= − 𝛿𝑆𝑚

𝛿 𝑔𝑎𝑏
.

(If you read about this story elsewhere in the literature— including in Carroll’s book— you
should be aware that it’s very common to adopt a different convention for functional derivatives,
where they would instead say, for example, 𝛿𝑆𝐷 =

∫
𝐷

𝛿𝑆
𝛿𝜙
𝛿𝜙𝑑4𝑥 . In other words, they use 𝑑4𝑥

in the position where we had the volume form 𝜔𝑔 . This will make some formulas look a bit
different.)

The computation of 𝛿𝑆𝐸𝐻 /𝛿 𝑔𝑎𝑏 is fairly straightforward but pretty long, so we won’t go
through it here. It can be found inmost textbooks on the subject, and in particular in Appendix
E of Wald and Section 4.3 of Carroll. The result is

𝛿𝑆𝐸𝐻

𝛿 𝑔𝑎𝑏
= − 1

16𝜋𝐺 (𝑅𝑎𝑏 − 1
2𝑅𝑔

𝑎𝑏 ).
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This is (apart from the factor out front and the raised indices) the quantity that appears
on the left side of Einstein’s equation, which is a promising sign! In particular, we can at least
conclude from this that, in the absence of matter, we do indeed recover the vacuum version
of Einstein’s equation. The extent to which we can claim to recover Einstein’s equation in the
presence of matter depends on whether we can conclude that the energy-momentum tensor of
thematter is given by

𝑇 𝑎𝑏 = 2 𝛿𝑆𝑚
𝛿 𝑔𝑎𝑏

.

Inmost textbook presentations of this part of the story, including the two I just cited, they
essentially stop here and declare victory, stating that the quantity on the right side of this
equation is the energy-momentum tensor and that we have therefore successfully reproduced
Einstein’s equation from a Lagrangian.

In my opinion, this leaves a fairly big question unanswered: why should we believe that
2𝛿𝑆𝑚/𝛿 𝑔𝑎𝑏 has anything to do with energy-momentum as we understood it before we knew
about Einstein’s equation? This is the question we’ll take on in the next section.

4 The Two Energy-Momentum Tensors
We can state the central issue as follows. In general relativity, energy-momentum plays two
quite different roles, and it will be useful to have some terminology available to distinguish
them from each other. Let’s call it inertial energy-momentumwhen it plays the role it plays in
non-gravitational physics. The inertial energy-momentum of a massive particle, for instance, is
its mass times its 4-velocity. And we’ll call it gravitational energy-momentumwhen it serves as
the source for gravity. In other words, gravitational energy-momentum is the quantity that goes
on the right side of Einstein’s equation.

One of the central claims of general relativity is, of course, that these two quantities are
identical; this is one of the things that makes gravity unique among the fundamental forces
of nature. The argument from the last section certainly provides a justification for identifying
2𝛿𝑆𝑚/𝛿 𝑔𝑎𝑏 withgravitational energy-momentum,but ifwe’regoing toclaimthatourLagrangian
story has reproduced general relativity, it would be nice if we could find an argument for also
identifying this quantity with inertial energy-momentum. Specifically, we have a preexisting
characterization of inertial energy-momentum from our knowledge of Lagrangianmechanics
in non-gravitational physics: it’s the Noether current corresponding to spacetime translations.
What does that Noether current have to do with 2𝛿𝑆𝑚/𝛿 𝑔𝑎𝑏 ?

It is worth saying at the outset that there is a weaker claimwe couldmake withmuch less
effort than we’re about to expend. The natural generalization of a spacetime translation to
curved spacetime is the flow along a vector field. As we’ll discuss inmore detail momentarily,
flowing the fields along a vector field isn’t a symmetry in general, but it is when we flow along
a Killing vector field, that is, when the flows are isometries. In this case, we can quite easily
extract a conserved current from the covariant conservation law ∇𝑎𝑇 𝑎𝑏 = 0, which follows
from Einstein’s equation: the vector field 𝐾 𝑎 is Killing if and only if ∇𝑎𝐾𝑏 = −∇𝑏𝐾𝑎 , and this,
combined with the symmetry of𝑇 𝑎𝑏 , gives us that ∇𝑎 (𝐾𝑏𝑇 𝑎𝑏 ) = 0.

This does give us a way to turn our symmetry into a current that is conserved, but in my
view it’s not a fully satisfying answer to the question at hand. When I learned this for the first
time, I wanted to see directly how the quantity that arises from applying the Noether machine
to spacetime translations is related to the quantity that shows up on the right side of Einstein’s
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equation, and the fact we just established doesn’t get us there on its own. Our goal in this section
is to fill in this gap.

4.1 Gravitational Energy-Momentum
In order to perform this comparison, we’ll need to find explicit formulas for the two energy-
momentum tensors. We’ll start with the gravitational energy-momentum tensor, which will
require introducing a bit of notation that I’m borrowing from the Szabados paper mentioned in
the introduction. There aremany formulas in differential geometry, usually involving various
sorts of derivatives, which involve a sum over all possible ways of replacing one of the indices
on the tensor being differentiated with a new index. For example, given a vector field 𝑋 𝑎 , the
Lie derivativeL𝑋𝑇

𝑎1 · · ·𝑎𝑟
𝑏1 · · ·𝑏𝑠 of an (𝑟 , 𝑠 )-tensor can be written

L𝑋𝑇
𝑎1 · · ·𝑎𝑟

𝑏1 · · ·𝑏𝑠 = 𝑋
𝑐∇𝑐𝑇 𝑎1 · · ·𝑎𝑟

𝑏1 · · ·𝑏𝑠 − (∇𝑐𝑋 𝑎1 )𝑇 𝑐𝑎2 · · ·𝑎𝑟
𝑏1 · · ·𝑏𝑠

− · · · − (∇𝑐𝑋 𝑎𝑟 )𝑇 𝑎1 · · ·𝑎𝑟−1𝑐
𝑏1 · · ·𝑏𝑠

+ (∇𝑏1𝑋 𝑐 )𝑇 𝑎1 · · ·𝑎𝑟
𝑐𝑏2 · · ·𝑏𝑠

+ · · · + (∇𝑏𝑠𝑋 𝑐 )𝑇 𝑎1 · · ·𝑎𝑟
𝑏1 · · ·𝑏𝑠−1𝑐 .

We’ll need to talk about a fewof these formulas inwhat follows, and so itwill be veryhelpful to
have a concise way to write these index games. Recall that 𝛿𝑎

𝑏
is the (1, 1)-tensor corresponding

to the identity map; in other words, in coordinates, it’s equal to 1 when 𝑎 = 𝑏 and 0 otherwise. If
we then define

Δ𝑒 𝑎1 · · ·𝑎𝑟𝑑1 · · ·𝑑𝑠
𝑓 𝑏1 · · ·𝑏𝑠 𝑐1 · · ·𝑐𝑟 =(𝛿 𝑒𝑐1𝛿

𝑎1
𝑓
𝛿𝑎2𝑐2 · · · 𝛿𝑎𝑟𝑐𝑟 + · · · + 𝛿𝑎1𝑐1 · · · 𝛿𝑎𝑟−1𝑐𝑟−1 𝛿

𝑒
𝑐𝑟
𝛿𝑎𝑟
𝑓
)𝛿𝑑1
𝑏1

· · · 𝛿𝑑𝑠
𝑏𝑠

− 𝛿𝑎1𝑐1 · · · 𝛿𝑎𝑟𝑐𝑟 (𝛿
𝑒
𝑏1
𝛿𝑑1
𝑓
𝛿𝑑2
𝑏2

· · · 𝛿𝑑𝑠
𝑏𝑠

+ · · · + 𝛿𝑑1
𝑏1

· · · 𝛿𝑑𝑠−1
𝑏𝑠−1

𝛿 𝑒𝑏𝑠 𝛿
𝑑𝑠
𝑓
),

we can pack our expression for the Lie derivative into just two terms:

L𝑋𝑇
𝑎1 · · ·𝑎𝑟

𝑏1 · · ·𝑏𝑠 = 𝑋
𝑐∇𝑐𝑇 𝑎1 · · ·𝑎𝑟

𝑏1 · · ·𝑏𝑠 − (∇𝑒𝑋 𝑓 )Δ𝑒 𝑎1 · · ·𝑎𝑟𝑑1 · · ·𝑑𝑠
𝑓 𝑏1 · · ·𝑏𝑠 𝑐1 · · ·𝑐𝑟 𝑇

𝑐1 · · ·𝑐𝑟
𝑑1 · · ·𝑑𝑠 .

(Note that the definition of Δ depends on the values of 𝑟 and 𝑠 , not just on the two lists of
𝑟 + 𝑠 + 1 indices attached to Δ; a different way of splitting 𝑟 + 𝑠 into two nonnegtaive integers
will result in a change of sign on some of the terms. Also, note that the above formula suggests
that, if 𝑟 = 𝑠 = 0, suggests we should set Δ𝑒

𝑓
= 0.)

This is definitely an improvement, but still kind of a notational handful. We can cut down
on the indices considerably by reintroducing the “multi-index” notation we were using before.
We’ll adopt the further convention that, if a superscript 𝐴 stands for the indices that belong on
an (𝑟 , 𝑠 )-tensor, then a subscript 𝐴 stands for the indices of an (𝑠 , 𝑟 )-tensor. Using this, we can
write the previous formula as

L𝑋𝑇
𝐴 = 𝑋 𝑐∇𝑐𝑇 𝐴 − (∇𝑒𝑋 𝑓 )Δ𝑒𝐴𝑓 𝐵𝑇

𝐵 .

There are a lot of facts about derivatives of tensors that can similarly be written in this way.
For example, we have

∇𝑎𝑇 𝐴 = 𝜕𝑎𝑇
𝐴 + Γ𝑏𝑎𝑐Δ

𝑐𝐴
𝑏𝐵𝑇

𝐵

[∇𝑎 ,∇𝑏 ]𝑇 𝐴 = 𝑅𝑑𝑐𝑎𝑏Δ
𝑐𝐴
𝑑𝐵𝑇

𝐵

[L𝑋 ,∇𝑎 ]𝑇 𝐴 = (𝑅𝑐 𝑏𝑑𝑎𝑋 𝑑 + ∇𝑎∇𝑏𝑋 𝑐 )Δ𝑏𝐴𝑐𝐵𝑇
𝐵 .
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Let’s write𝑇 𝑎𝑏
grav = 2𝛿𝑆𝑚/𝛿 𝑔𝑎𝑏 for our gravitational energy-momentum tensor. If you pick an

arbitrary variation of themetric and consider

𝛿𝑆𝑚 =

∫
𝐷

𝛿 (𝐿𝑚𝜔𝑔 ) =
∫
𝐷

[
𝐿𝑚𝛿𝜔𝑔 +

(
𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
𝛿 (∇𝑎𝜙𝐴) + 𝜕𝐿𝑚

𝜕𝑔𝑎𝑏
𝛿 𝑔𝑎𝑏

)
𝜔𝑔

]
,

it’s a nice exercise (also done, after some translation between our notations, on p. 10 of the
Saraví paper) to show that this produces the formula

𝑇 𝑎𝑏
grav = 2 𝜕𝐿𝑚

𝜕𝑔𝑎𝑏
+ 𝐿𝑚𝑔 𝑎𝑏 +

1
2∇𝑐 (Σ

𝑎𝑏𝑐 + Σ𝑏𝑎𝑐 − Σ𝑎𝑐𝑏 − Σ𝑏𝑐𝑎 − Σ𝑐𝑎𝑏 − Σ𝑐𝑏𝑎 ),

where
Σ𝑖 𝑗 𝑘 =

𝜕𝐿𝑚

𝜕𝑣𝐴
𝑖

Δ
𝑗𝐴

𝑘𝐵
𝜙𝐵 .

(If you try to prove this, remember that any integral of a total divergence is zero, and that any
expression of the form𝑇 𝑎𝑏𝛿 𝑔𝑎𝑏 can also be written 1

2 (𝑇
𝑎𝑏 +𝑇 𝑏𝑎 )𝛿 𝑔𝑎𝑏 because of the symmetry

of 𝑔𝑎𝑏 .)

4.2 Inertial Energy-Momentum
Let’snowturn to the inertial energy-momentumtensor. Asmentionedabove, innon-gravitational
physics on flat spacetime, we have a clear picture of what inertial energy-momentum ought to
mean: it’s the Noether current corresponding to spacetime translations. In curved spacetime,
of course, there is no reason to think that spacetime translation is any sort of symmetry at all;
themetric is different at different points, so simply translating the fields across spacetime will
certainly affect the value of the Lagrangian.

Youmight instead consider translating the fields and themetric. Unfortunately, while we
won’t go over this in detail here, Noether’s Theorem turns out to be vacuous in this case. (This is
probably to be expected— as we discussed in themain article, the covariant conservation law
∇𝑎𝑇 𝑎𝑏 does not imply the existence of any conserved currents in general.) Themain exception
is, as wementioned above, when our metric has a Killing vector field. In this case, we do get
a symmetry by flowing along this vector field, and we can apply the Noether machine to get a
nontrivial conserved current.

So for themoment let’s suppose𝐾 𝑎 is a Killing vector field. In order to ensure that flowing the
fields along 𝐾 𝑎 is actually a symmetry, we’ll also assume going forward that that our Lagrangian
doesn’t depend directly on the point 𝑥 ∈ 𝑀 .

We’ll start bywriting anexpression for thederivative of thematter Lagrangian in thedirection
of 𝐾 𝑎 . Regardless of whether or not 𝐾 𝑎 is Killing, we have

𝐾 𝑎∇𝑎𝐿𝑚 =
𝜕𝐿𝑚

𝜕𝑦𝐴
L𝐾 𝜙

𝐴 + 𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
L𝐾 (∇𝑎𝜙𝐴) + 𝜕𝐿𝑚

𝜕𝑔𝑎𝑏
L𝐾 𝑔𝑎𝑏 .

At first glance, this doesn’t look like it fits into our Noether current story. First, for our definition
of “infinitesimal symmetry,” the expressionmultiplying 𝜕𝐿𝑚/𝜕𝑣𝐴𝑎 has to be ∇𝑎 of the expression
multiplying 𝜕𝐿𝑚/𝜕𝑦𝐴 , which seems not to be the case here. Second, we need the left side to be a
total divergence, which it seems not to be. And third, we have the extra term involving 𝑔𝑎𝑏 .

Luckily, all of these issues are solved when 𝐾 𝑎 is Killing. By the definition of a Killing vector
field, we have L𝐾 𝑔𝑎𝑏 = 0, so the last term vanishes. Furthermore, L𝐾 commutes with ∇𝑎
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whenever 𝐾 𝑎 is Killing. (One quick way to see this is to use the definition of the Lie derivative in
terms of flows; since the flows are isometries, they preserve covariant derivatives.) We therefore
can write

𝐾 𝑎∇𝑎𝐿𝑚 =
𝜕𝐿𝑚

𝜕𝑦𝐴
L𝐾 𝜙

𝐴 + 𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
∇𝑎 (L𝐾 𝜙

𝐴)

= EL𝐴 (𝜙)L𝐾 𝜙
𝐴 + ∇𝑎

(
𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
L𝐾 𝜙

𝐴

)
.

Using the fact that 𝐾 𝑎 is Killing once again to conclude that ∇𝑎𝐾 𝑎 = 0, we see that

∇𝑎
(
𝐾 𝑎𝐿𝑚 − 𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
L𝐾 𝜙

𝐴

)
= 0,

when 𝜙𝐴 satisfies the Euler–Lagrange equations. In other words,

𝐽 𝑎 = 𝐾 𝑎𝐿𝑚 − 𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
L𝐾 𝜙

𝐴

is a Noether current for to our symmetry.
What if, as will almost always be the case, there is no Killing vector field? It still seems like we

ought to be able to talk about inertial energy-momentum, at least in an approximate sense. If I’m
at some point 𝑥 , and I never travel far enough away from 𝑥 to notice the curvature of spacetime,
I could produce an inertial energy-momentum tensor from my (technically erroneous, but
approximately correct) belief that spacetime is flat near 𝑥 , and it still makes sense to ask about
the relationship between this quantity and the source for gravity.

One way to formalize this concept of “the coordinates you would use if you were ignorant of
gravity” is through the use of Riemannian normal coordinates. Recall that, around every point
of spacetime, we can find a coordinate patch such that, at our chosen point, 𝑔𝑎𝑏 is equal to the
Minkowski metric and the covariant derivatives are given by ordinary partial derivatives. In this
coordinate system, the coordinate translation vector fields are not Killing, but they are close; if
we restrict to points whose coordinates differ from our chosen point by at most 𝜖, then the error
— that is, the difference between ∇𝑎 𝐽 𝑎 and zero— is on the order of 𝜖 |𝑅𝑎𝑏 | +𝑂 (𝜖2).

4.3 The Comparison
With explicit expressions for our two energy-momentum tensors in hand, we’re almost ready to
see how they are related.

To facilitate this comparison, we’d like to get our expression for the Noether current into a
formwhich contains a (2, 0)-tensor that wemight somehow relate directly to𝑇 𝑎𝑏

grav. I encourage
you to verify that we can write

𝐽 𝑎 = 𝐾 𝑏Θ𝑎
𝑏 + (∇𝑏𝐾𝑐 )Σ𝑎𝑏𝑐 ,

where
Θ𝑎

𝑏 = 𝛿𝑎𝑏 𝐿𝑚 − 𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
∇𝑏𝜙𝐴

is the so-called canonical energy-momentum tensor.
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It’s instructive to take a small detour to see what this expression looks like in the case of
translations and rotations inMinkowski space. For translations, 𝐾 𝑏 will be a constant vector, so
the second term in 𝐽 𝑎 vanishes, leaving us with just

𝐽 𝑎 = 𝐾 𝑏Θ𝑎
𝑏 .

In particular, if we had started by considering a field theory in flat spacetime and considered
only spacetime translations,Θ𝑎

𝑏 is the quantity wemight have naturally singled out as “the”
energy-momentum tensor, so that for any vector𝑉 𝑏 , the quantity𝑉 𝑏Θ𝑎

𝑏 could be thought of as
linear energy-momentum current density in the𝑉 𝑏 direction.

I encourage you to convince yourself that rotation in the plane spanned by two constant
spacelike vectors𝑉 𝑎 and𝑊 𝑎 is generated by the vector field 𝐾 𝑏 = 𝑥𝑐 (𝑉𝑐𝑊 𝑏 −𝑊𝑐𝑉

𝑏 ), where 𝑥𝑐
is theR4-valued function on spacetime which outputs the spacetime coordinates of each point,
and that the resulting current is

𝐽 𝑎 = 𝑥𝑐 (𝑉𝑐𝑊 𝑏 −𝑊𝑐𝑉
𝑏 )Θ𝑎

𝑏 +𝑉𝑏𝑊𝑐 (Σ𝑎𝑏𝑐 − Σ𝑎𝑐𝑏 ).

Using the interpretation of𝑉 𝑏Θ𝑎
𝑏 we just discussed, the first term is naturally interpreted as

orbital angularmomentum, that is, the contribution to angularmomentum arising from linear
motion parallel to the plane of rotation and orthogonal to 𝑥𝑐 . The second termwould then be
an “intrinsic” contribution to angular momentum, that is, one that doesn’t arise from linear
motion but frommotion “internal” to the space in which the fields take their values. (Notice
that, for a scalar field, Σ𝑎𝑏𝑐 = 0, so this contribution will vanish.) Physicists often call this spin
angularmomentum, and we’ll adopt this terminology whenwe discuss this quantity a bit more
in just a moment.

We’re now finally ready to talk about how our two quantities are related. Following Szabados,
we’ll be aided by the following fact. Pick an arbitrary vector field𝑋 𝑎 . Using the fact thatL𝑋 𝑔𝑎𝑏 =

∇𝑎𝑋𝑏 + ∇𝑏𝑋𝑎 , and still assuming that 𝐿𝑚 doesn’t depend directly on 𝑥 , we can write

∇𝑎 (𝐿𝑚𝑋 𝑎 ) = 𝑋 𝑎∇𝑎𝐿𝑚 + 1
2𝐿𝑚𝑔

𝑎𝑏L𝑋 𝑔𝑎𝑏

= EL𝐴 (𝜙)L𝑋𝜙
𝐴 +

(
𝜕𝐿𝑚

𝜕𝑔𝑎𝑏
+ 1
2𝐿𝑚𝑔

𝑎𝑏

)
L𝑋 𝑔𝑎𝑏

+ ∇𝑎
(
𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
L𝑋𝜙

𝐴

)
+ 𝜕𝐿𝑚

𝜕𝑣𝐴𝑎
(L𝑋 (∇𝑎𝜙𝐴) − ∇𝑎 (L𝑋𝜙

𝐴)).

After an honestly unreasonably long computation which I won’t reproduce here (if you’re
interested, Saraví’s paper goes through an essentially equivalent one) this equality can be
digested into the following form:

EL𝐴 (𝜙)L𝑋𝜙
𝐴 +𝑇 𝑎𝑏

grav (∇𝑎𝑋𝑏 ) = ∇𝑎 (𝑋 𝑏Θ𝑎
𝑏 + Σ̃𝑎𝑏𝑐 (∇𝑏𝑋𝑐 )),

where
Σ̃𝑎𝑏𝑐 =

1
2 (Σ

𝑎𝑏𝑐 − Σ𝑎𝑐𝑏 + Σ𝑏𝑐𝑎 − Σ𝑏𝑎𝑐 + Σ𝑐𝑏𝑎 − Σ𝑐𝑎𝑏 ).

Assume that the fields satisfy the Euler–Lagrange equations, so that the first term vanishes.
Then, since the vector field 𝑋 𝑎 is arbitrary, the coefficients of 𝑋 𝑐 , ∇𝑏𝑋 𝑐 and ∇𝑎∇𝑏𝑋 𝑐 on each
side of this equationmust all separately be equal, so we can conclude that

𝑇 𝑏𝑐
grav = Θ𝑏𝑐 + ∇𝑎 Σ̃𝑎𝑏𝑐 .
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The expression on the right is called the Belinfante–Rosenfeld formula for the energy-
momentum tensor. If we had started with the “canonical” energy-momentum tensor Θ𝑏𝑐 —
which we might have been led to do if we’d started by looking at spacetime translations in
Minkowski space as above — then we can look at the second term as a “correction” to our
energy-momentum tensor. Indeed,Θ𝑎𝑏 is not especially close tobeing anadequate gravitational
energy-momentum tensor; it isn’t even symmetric in general, and it will also often fail to be
gauge-invariant in physical theories where that’s a relevant concern.

In Minkowski space, you can sort of picture the Belinfante–Rosenfeld formula as telling
you that you need to include contributions from spin angular momentum in order to pro-
duce the quantity that can serve as a source for gravity, although that interpretation doesn’t
generalize beyond that setting, because we needed to take advantage of the entire coordinate
system onMinkowski space to identifyΘ𝑎𝑏 and Σ𝑎𝑏𝑐 with linear energy-momentum and spin
respectively. In general, Θ𝑎𝑏 and Σ̃𝑎𝑏𝑐 are not, by themselves, especially physically meaning-
ful quantities, while 𝑇 𝑎𝑏

grav obviously is, and accordingly I think the perspective in which the
Belinfante–Rosenfeld formula is seen as a way of correcting the deficiencies inΘ𝑎𝑏 is a some-
what limited one.

Finally, let’s see what this tells us about our Noether current in the presence of a Killing field,
which we had gotten into the form

𝐽 𝑎 = 𝐾 𝑏Θ𝑎
𝑏 + (∇𝑏𝐾𝑐 )Σ𝑎𝑏𝑐 .

I encourage you to verify that, since ∇𝑏𝐾𝑐 is antisymmetric (because 𝐾 𝑐 is Killing) this is equal
to

𝐽 𝑎 = 𝐾 𝑏Θ𝑎
𝑏 + (∇𝑏𝐾𝑐 )Σ̃𝑎𝑏𝑐 ,

and that the Belinfante–Rosenfeld formula then implies that

𝐽 𝑎 = 𝐾𝑏𝑇
𝑎𝑏
grav + ∇𝑏 (𝐾𝑐 Σ̃𝑎𝑏𝑐 )

whenever the Euler–Lagrange equations are satisfied.
The tensor𝐾𝑐 Σ̃𝑎𝑏𝑐 is antisymmetric in𝑎 and𝑏 , and this implies that∇𝑎∇𝑏 (𝐾𝑐 Σ̃𝑎𝑏𝑐 ) = 0. (This

fact, which is true of any antisymmetric tensor, is somewhat nonobvious but purely geometric,
and it is worth working out on your own if it’s unfamiliar.) The currents 𝐽 𝑎 and 𝐾𝑏𝑇 𝑎𝑏

grav therefore
differ by a quantity that is divergence-free. In other words, in the language we used when we
introducedNoether currents, 𝐽 𝑎 and𝐾𝑏𝑇 𝑎𝑏

grav are equivalent conserved currents for the symmetry
arising from flowing along a Killing vector field.

This, finally, is the promised relationship between the gravitational and inertial energy-
momentum tensors. They are not equal in general, just equivalent in the sense just described.
(In a couple simple cases —most obviously for a scalar field, where Σ𝑎𝑏𝑐 = 0—we will have
equality, but when this happens I think it should essentially be regarded as a coincidence.) Our
𝐽 𝑎 is the quantity that arises directly fromNoether’s Theorem, but remember that Noether’s
Theorem does not have the capacity to choose from among equivalent currents, and so we
would be justified in saying that 𝐾𝑏𝑇 𝑎𝑏

grav is a Noether current corresponding to our translation
symmetry.

By contrast, theprocedure that produced𝑇 𝑎𝑏
grav does actually pick out that specific tensor once

the Lagrangian has been specified. For this reason, it is best to think of this object, rather than
anything involvingΘ𝑎𝑏 or Σ𝑎𝑏𝑐 , as “the” energy-momentum tensor whenever the distinction
might matter: it is the quantity that serves as a source for gravity and also, in the presence of a
Killing symmetry, it leads to one of the possible quantities that can be used as the corresponding
Noether current.
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