
1

Generating Functions II - Partitions,
Pentagons, and Power Series

Nic Ford

1 Introduction
This article is a followup to an earlier one on a technique in combinatorics called generating
functions. We’ll be exploring the fascinating relationship between counting partitions—basi-
cally the number of ways of writing a positive integer as a sum of smaller positive integers—
and a sequence of integers called the pentagonal numbers.

The result we’ll be proving, called the Pentagonal Number Theorem, is one of my favorite
applications of generating functions. It uses generating functions in a somewhat unexpected
way: we will find a generating function for the thing we’re interested in counting, but rather
than use it to find a formula like we did in our previous examples, we will use it to produce a
different generating function and ask what it counts, leading to an answer that both delivers
the proof of the theorem and is very pretty in its own right.

If you’re familiar with generating functions, you should be fine to read this article without
the first one. If you’re not but you’re excited to dive into the problemwe’ll be exploring here, you
could probably get away with just reading the first half of the first article, skipping the sections
on derangements and the Fibonacci numbers that appear at the end.

I’m grateful to Jake Levinson for his helpful comments on this article.

2 Setting Up the Problem

2.1 What Is a Partition?
The objects we’ll be counting are called partitions. Given a positive integer <, a partition of < is
a way of writing < as a sum of positive integers. Order doesn’t matter, and repeats are allowed:
(10), (7, 3), (6, 3, 1), (4, 4, 2), and (2, 2, 2, 2, 2) are some of the partitions of 10.

The numbers that show up in a partition are called its parts. Since the order of the parts
doesn’t matter, (7, 3) and (3, 7) are considered the same partition. The common convention,
which we’ll follow from now on, is to always write the parts in decreasing order.

You can specify a partition by listing its parts, but it’ll also be useful to have amore visual
representation. The Young diagram of a partition is a picture where each part is represented by
a row of boxes. For example, the Young diagram of the partition (5, 3, 1, 1) looks like this:

https://nicf.net/articles/generating-functions/

Section 2 Setting Up the Problem 2

#
There are seven partitions of 5. Here they are in both Young diagram and list-of-parts form:

T E
(S) (4

, 1) (3 ,
2) (3 , 1 , 1) (2

,
2
, 1) (2 , 1 , 1 , 1) (1 ,41

If you’d like some practice, try to draw Young diagrams for all the partitions of 6. You should
find that there are 11 of them.

2.2 The Partition Function
The problemwe’ll be investigating is how to determine, for each <, the number of partitions of
<. We’ll denote this number by> (<), and> is called the partition function. The examples we
just discussed tell us that> (5) = 7 and> (6) = 11. Here are the values of> (<) for the first few <’s:

< 0 1 2 3 4 5 6 7 8 9 10 11 12
> (<) 1 1 2 3 5 7 11 15 22 30 42 56 77

If you read the previous article on generating functions, youmight have a guess about where
we’re going from here: we’ll find a generation function for > (<)— that is, find a nice way to
write the power series∑∞<=0 > (<)F< —and do some fancy-looking algebra to extract a way to
write> (<) in closed form.

If this was your guess, then I have some surprising news. While we will indeed be finding a
generating function for> (<), we won’t use it to write> (<) in closed form. In fact, no one knows
how to write> (<) in closed form! While a lot is known about> (<), finding an explicit formula
for it is a major unsolved problem in combinatorics, and one that hardly anyone in the field
expects to be solved any time soon.

Soour goal is going tohave tobemoremodest. We’re going touncover a recursive relationship
between the values of> (<) for different <’s. While the resulting rule doesn’t give a formula, it is
possible to compute> (<) for < by applying the rule repeatedly, as we’ll see once we have the
rule in hand.

2.3 Uncovering the Pattern
We’re going to start by trying to guess the pattern without worrying about the proof. This part of
the story is pretty down-to-earth: it won’t require generating functions at all, just playing around
with pictures of partitions. As we go through this part of the story, I encourage you to pause
every once in a while and see what patterns you can uncover on your own beforemoving on!
After we’ve seen roughly what the pattern looks like, we’ll see how to use generating functions
to prove it.

We’ll start by looking for some recursive patterns in the values of> (<). In other words, we’re
looking for someway to count partitions of < using information about partitions of numbers

https://nicf.net/articles/generating-functions

Section 2 Setting Up the Problem 3

smaller than <. There are tons of patterns to be found here — you might find some others
yourself — but we’ll focus on the one that leads to the rule we’ll be discussing later on.

If we start with a partition of <, one way to get a smaller partition is to delete the first part,
that is, the top row of the Young diagram. If you start with a partition whose first part is 9 ,
deleting the first part gives you a partition of < − 9 . Since the answer depends on what the
first part is, it will be helpful to split up the partitions of < accordingly, so let’s introduce some
notation for this: we’ll write>9 (<) for the number of partitions of < whose first part is 9 . Here
are all the partitions of 6 split up in this way:

Ep . Con = 1 HDFD pp(6) = 2

P2(6) =3 # ps(6) = 1

43(6) = 3
ps(6)

=1

Because every partition of < will appear in exactly one of these groups, we can write> (<) as
the sum of all the>9 (<)’s, that is,

> (<) = >1 (<) + >2 (<) + · · ·>< (<).

Now, there are some partitions of < − 9 that you can’t get by starting with a partition of <
with first part 9 and deleting the first part: since the parts appear in decreasing order, the first
part of the result has to be less than or equal to 9 . I encourage you to convince yourself that this
amounts to the following rule: if 9 < <, then

>9 (<) = >1 (< − 9) + >2 (< − 9) + · · · + >9 (< − 9).

For example, this means that>2 (6) = >1 (4) + >2 (4). Take amoment to check this!
Let’s write this last equation in a slightly different way. We said that the result of our deletion

has first part less than or equal to 9 , but this is the same as saying that the first part can’t be
greater than 9 . That is, we can get any partition of < − 9 except the ones whose first part is 9 + 1
or bigger. In other words,

>9 (<) = > (< − 9) − (>9+1 (< − 9) + · · · + ><−9 (< − 9)).

The recursive relationship between the> (<)’s that we’re looking for will come from applying
this rule over and over again. Let’s see how it works for> (6) and it should be reasonably clear
that themethod will work in general.

We’ll start by writing

> (6) = >1 (6) + >2 (6) + >3 (6) + >4 (6) + >5 (6) + >6 (6).

Section 3 Generating Functions 4

If we rewrite each term using our rule for>9 (<), we get

> (6) = > (5) + > (4) + > (3) + > (2) + > (1) + > (0)
− (>2 (5) + >3 (5) + >4 (5) + >5 (5))
− (>3 (4) + >4 (4)).

Weget to stopwith the subtractions here, because>3 (6) = >1 (3) +>2 (3) +>3 (3), which is actually
all the partitions counted by> (3), so there is nothing to subtract, and the same is true for all
the subsequent terms.

From here, we can apply the rule again to those six terms at the end and get:

> (6) = > (5) + > (4) + > (3) + > (2) + > (1) + > (0)
− (> (3) − >3 (3)) − > (2) − > (1) − > (0)
− > (1) − > (0).

The only term left that isn’t a> (<) is the>3 (3), which we can replace with> (0). If wemake that
substitution and then cancel all the terms that cancel, we are left with

> (6) = > (5) + > (4) − > (1).

You can check this directly using our table from earlier: this equation becomes 11 = 7 + 5 − 1.
If we ran this procedure for any> (<), it would always terminate: every time we apply our

rule for>9 (<) we decrease the number inside the parentheses, so we eventually hit the end.
It’s worth reflecting on how simple our final expression is. Most of the terms cancelled, and

the ones that didn’t all ended up with a coefficient of 1 or −1. If you tried this for larger <’s, you
would find that this remains true. For example, after a lot more steps, we’d get that

> (24) = > (23) + > (22) − > (19) − > (17) + > (12) + > (9) − > (2).

It’s far from clear why this should happen! Why do almost all the terms cancel, and what’s
special about the ones that don’t? These are exactly the questions that will be answered by
looking at the generating function for > (<). (It’s also possible to answer these questions by
analyzing our procedure directly, but, at least in my opinion, the resulting argument isn’t nearly
as nice. If you’re interested in a version of the story that does proceed that way, using a slightly
different way of splitting up the partitions, there is a nice explanation in this MathPages article.)

3 Generating Functions

3.1 The Generating Function for the Partition Function
We’ll now turn to writing down a generating function for> (<). We’ll approach this problem in
a couple of stages, both because this shouldmake the final answer easier to understand and
because one of the intermediate steps will be useful for a different reason later on.

Our first example in the previous article was the generating function for
(<
9

)
, which was

<∑
9=0

(
<

9

)
F9 = (1 + F)< .

https://www.mathpages.com/home/kmath623/kmath623.htm

Section 3 Generating Functions 5

One way to see this is to imaginemultiplying < copies of (1 + F) and counting howmany times
we’ll get F9 . Each term of the product comes from picking either the 1 or the F from each of the
(1 + F)’s, and you’ll get F9 if you picked 9 F ’s and < − 9 1’s. Therefore, the number of times we
get F9 is equal to the number of ways of selecting, from among the< factors of (1+ F), 9 of them
to give you an F . And this is exactly what

(<
9

)
counts.

We can use a similar argument to produce a generating function for> (<). As a first step, let’s
consider a related object called the distinct partition function, often written ? (<). This is the
number of partitions of < with no repeated parts. For example, of the seven partitions of 5, all
but three have repeated parts, so ? (5) = 3:

I
The generating function for ? (<) is then

∞∑
<=0

? (<)F< = (1 + F) (1 + F2) (1 + F3) · · · .

We can see this by asking, like we did for the
(<
9

)
’s, how youmight get an F< to pop out when you

expand this product. You get a term in the product by selecting either the 1 or the F from the
first factor, either the 1 or the F2 from the second factor, and so on; you’ll get F< exactly when
the powers of F that you picked add up to <. In other words, each F< comes from picking a set
of distinct positive integers that add up to <. This is exactly what ? (<) counts!

(You might be a bit queasy about the fact that we’ve written our generating function as
an infinite product. Is this well-defined? It may help to notice that, while we are multiplying
infinitely many factors together, the contribution to any particular coefficient can only come
from finitely many of them. If, for example, you wanted to know the coefficient of F10, then
when you expand out the product you can’t be selecting the F11 from (1 + F11), since this would
already push the power of F past 10, and the same is true for all the higher powers of F .)

Since each factorwe’remultiplying looks like (1+F9), whenwe’re expanding out the product,
we can either take the F9 or the 1, which corresponds to either including9 in our partition or not.
If we insteadwant a generating function for> (<), wewant to find away to allow9 to be included
more than once. We can accomplish this by replacing (1+F9) with (1+F9 +F29 +F39 + · · ·): this
way, when it comes time to select a term from this factor, we can pick F;9 , which corresponds
to including 9 in our partition; times.

As we saw a couple of times the previous article, this is a geometric series:

1 + F9 + F29 + · · · = 1
1 − F9 .

If wemake this replacement in our generating function for ? (<)— that is, replace each (1 + F9)
with 1/(1 − F9)—we get the following generating function for> (<):

∞∑
<=0

> (<)F< =
1

(1 − F) (1 − F2) (1 − F3) · · · .

Section 4 What Does This Count? 6

3.2 A Recursive Relationship
Our formula for> (<)’s generating function implies that(∞∑

<=0
> (<)F<

)
(1 − F) (1 − F2) (1 − F3) · · · = 1.

If we write
(1 − F) (1 − F2) (1 − F3) · · · =

∞∑
<=0

2 (<)F< ,

then using this notation, we have that (∑∞<=0 > (<)F<) (∑∞<=0 2 (<)F<) = 1. I encourage you to
check that, if you expand this out and compare the coefficient of F< on each side, we get that

<∑
9=0

2 (9)> (< − 9) =
{
0 if < > 0
1 if < = 0.

For any particular <, we can see what this formula looks like by just expanding the product
(1 − F) (1 − F2) (1 − F3) · · · by hand and stopping once we get past F< . For < = 6, you’d get

(1 − F) (1 − F2) (1 − F3) · · · = 1 − F − F2 + F5 + · · · ,

whichmeans 2 (0) = 1, 2 (1) = 2 (2) = −1, 2 (3) = 2 (4) = 0, 2 (5) = 1, and 2 (6) = 0. Plugging this
into the formula above gives

> (6) − > (5) − > (4) + > (1) = 0.

This is exactly the same thing we found in the last section! This is a pretty good sign that
we’re on the right track. If we find a way to explicitly compute the 2 (9)’s, we’ll be done.

4 What Does This Count?

4.1 EvensMinus Odds
The first thing to notice is that the generating function for 2 (<) is very similar to the generating
function for ? (<)— that is, partitions with no repeated parts— that we considered earlier:

∞∑
<=0

? (<)F< = (1 + F) (1 + F2) (1 + F3) · · ·

∞∑
<=0

2 (<)F< = (1 − F) (1 − F2) (1 − F3) · · · .

The only difference is theminus sign inside each of the factors beingmultiplied.
How do theseminus signs change what we’re counting? If we again imagine expanding the

product and counting howmany times we get F< , we see that we still get one such term for each
partition of < with no repeated parts, because it’s still the case that we’re either picking the 1
or the F9 from each (1 − F9), and we still get F< exactly when the powers of F add up to <. But

Section 4 What Does This Count? 7

now, every time we pick F9 — that is, every time we stick a row of 9 onto our partition—we also
multiply the term by −1.

So our termwill be F< if the partition has an even number of rows and −F< if it has an odd
number of rows. For example, there are three ways to get F5: it can come from (−F5), (−F4) (−F),
or (−F3) (−F2). The first of these ends up with aminus sign and the others each end up with a
plus sign, so the final coefficient on F5 is 1, as we saw near the end of the last section. Putting
this all together, you can compute 2 (<) by finding, among all partitions of < with no repeated
parts, the difference between the number of partitions with an even number or parts and the
number with an odd number of parts.

We can make this a bit more concrete by looking at a couple examples. Here are all the
partitions of 1 through 6 with no repeated parts split up based on whether they have an even or
odd number of parts:

=>#I
From thediagram,we seeonce again thatwhen< = 5, the left columnhas onemorepartition

than the right, giving another way to see that 2 (5) = 1. On the other hand, when < = 6, we get
the same number of partitions on each side, so 2 (6) = 0.

4.2 Pairing Off Partitions
This gives us a way to determine the values of 2 (<), and therefore the coefficients in our rela-
tionship between the > (<)’s. It’s a nice pattern, but if we left things here it wouldn’t really be
a satisfying answer to our original question. For one thing, we’d be “answering” our question
about how to count partitions by just counting somedifferent partitions. Butmore substantively,
therewas something quite striking about the original recursive relationship thatwould go totally
unexplained: why didmost of the coefficients end up being 0? And were the few that weren’t
always 1 or −1?

We can get to the bottom of this mystery by spending a bit more time analyzing what 2 (<)
is counting. This last step will finally deliver on the promise from the introduction about
pentagonal numbers, and inmy opinion it’s themost beautiful part of the whole story.

Our examples from earlier suggest that most of the 2 (<)’s are going to end up being zero. If
some 2 (<) = 0, our earlier description implies that, among the partitions of < with no repeated
parts, there are the same number with an odd number of parts as with an even number of parts.

Section 4 What Does This Count? 8

One way to show that two sets have the same number of elements is to find someway of pairing
off elements of the first set with elements of the second, so let’s start by looking at an example <
and see if we canmanage to do this for the partitions we’re counting. Here are all the partitions
of 11 with no repeated parts, split up based on whether they have an even or odd number of
parts: F

We canmaybe see the beginning of a way to pair these off with each other: we can either
break off a box from the end of the first row and stick it on the bottom, or, if the bottom row has
just one box, we can do the reverse. This operation will always either add or remove one row, so
it will take a partition with an odd number of parts to one with an even number and vice versa.

The only pair where this doesn’t quite work is the bottom one in the diagram. In that one,
the second row has just one fewer box than the first, so if we took a box off the top rowwewould
introduce a repeated part. But we can fix this with a slight modification to the rule. We can peel
off the entire last diagonal and stick it on the bottom, and that does the job:

#III

The complete rule for pairing off our partitions is as follows:

• Let 1 be the length of the bottom row, and let 3 be the length of the last diagonal (that is,
the longest diagonal of squares you can find by starting at the top right and going down
and to the left at a 45 degree angle).

• If 1 > 3 , remove all the boxes in the diagonal and place them on the bottom row.

• If 1 ≤ 3 , instead remove all the boxes from the bottom row and place them along the
diagonal.

Section 4 What Does This Count? 9

If you’d like, try using this rule to pair off the partitions of 13 with each other. (We’ll see in a
minute that 12 is special!)

4.3 Pentagonal Numbers
Now, we are trying to show thatmost of the 2 (<)’s are zero, not all of them. That means that our
pairing-off proceduremust fail for some <’s.

There are two possible ways for this to happen, and they both involve the cases where the
diagonal we’re counting reaches all the way to the bottom row. The first possibility is that 1 = 3 ,
and the partition has 3 rows. In this case, the bottom row and the diagonal share a box, so when
we remove the bottom row as our rule tells us to, we’ve also removed the end of the diagonal:

T#FF
This causes a couple of problems. First, the output partition has the samenumber of parts as

the input, whereaswewere trying to switch fromanodd to an evennumber of parts or vice versa.
Second, this process isn’t reversible: I encourage you to check that if you tried applying our rule
to the partition at the end in this example, you wouldn’t get the partition at the beginning.

For any given <, there can be atmost one partition that looks like this: the bottom row has to
be3 , the next row up has to be3 + 1, and so on up to3 + (3 − 1), since there are3 rows in total. If
there is a partition of < like this, we can add up these numbers to learn what < has to be: we get

< = 3 + (3 + 1) + (3 + 2) + · · · + (3 + (3 − 1)) = 32 + 123 (3 − 1) =
3 (33 − 1)

2 .

There’s one other way our procedure could fail. If 1 = 3 + 1 and the partition has 3 rows,
our rule tells us to remove the diagonal and stick it on the bottom. But when we remove the
diagonal we’re also removing a box from the bottom row, so when we try to add it to the bottom
we end up with a repeated part:

#
For the same reasons as last time, any given < can have at most one partition like this, and

you can once again add up the rows to see which <’s this can happen for. I encourage you to
check that you get < =

3 (33−1)
2 + 3 .

I also encourage you to check that these are the only two caseswhere our rule can fail: for any
partition that isn’t one of these two types, we succeed in pairing it off with exactly one partner.

The number 3 (33−1)
2 has a name: it’s called the 3 ’th pentagonal number, and we’ll write it

%3 . The name comes from a way of arranging %3 dots into a pentagon, kind of similar to the
square or triangular numbers youmight bemore familiar with:

Section 4 What Does This Count? 10

·

· · · ·⑨
P
.
= 1 P2 :5 Ps = 12 Dy =22

You can actually see the same pentagonal shape in disguise in the first type of partitions that
cause our rule to break:

-

· #
The second type just look like these with an extra column on the left.
So what does this tell us about the 2 (<)’s and our recursive relationship between the> (<)’s?

If < is not of the form %3 or %3 + 3 , then our rule perfectly pairs of our partitions, so 2 (<) = 0. If
< is equal to %3 or %3 + 3 , then there will be exactly one partition that doesn’t get a partner. The
number 3 is also the number of parts in the partition, so that’s what determines whether the
extra partition has an even or odd number of parts, and therefore whether 2 (<) ends up as 1 or
−1. Summing up, we have that, if < > 0,

2 (<) =

1 if < = %3 or %3 + 3 , and 3 is even
−1 if < = %3 or %3 + 3 , and 3 is odd
0 otherwise.

(The way we’ve set things up, we need to treat < = 0 as a special case and also declare that
2 (0) = 1. Do you see why < = 0 doesn’t exactly fit into this template?)

The 2 (<)’s appeared in our recursive formula for the> (<)’s via the fact that, if < > 0, then
<∑

9=0
2 (9)> (< − 9) = 0.

With our new characterization of the 2 (<)’s, we can pull the 9 = 0 term to the other side of the
equation and write

> (<) = > (< − %1) + > (< − (%1 + 1)) − > (< − %2) − > (< − (%2 + 2)) + · · ·
= > (< − 1) + > (< − 2) − > (< − 5) − > (< − 7) + · · · ,

where we stop adding terms once the pentagonal numbers get bigger than <. I encourage you
to compare this to the cases we worked out for < = 6 and < = 24 back at the beginning and see
that theymatch!

This is the Pentagonal Number Theorem, and it’s one of my favorite applications of gen-
erating functions. The generating function gets used in such a counterintuitive way: rather
than leading directly to a formula for> (<), the generating function instead led us to a different
counting problem, for 2 (<), which turned out to be easier to solve, and solving it is what gave
us our recursive formula. There is of course a huge amount more to be said about partitions—
they’re some of themost well-studied objects in combinatorics— but I hope you’ve enjoyed
this little taste, and I’m looking forward to exploringmore applications of generating functions
as this series continues.

	Introduction
	Setting Up the Problem
	What Is a Partition?
	The Partition Function
	Uncovering the Pattern

	Generating Functions
	The Generating Function for the Partition Function
	A Recursive Relationship

	What Does This Count?
	Evens Minus Odds
	Pairing Off Partitions
	Pentagonal Numbers

