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The Number Theory of Binary Quadratic Forms

Nic Ford

Mathcamp 2025

Introduction
These are notes from a class that I taught at Canada/USA Mathcamp 2025. The target audience is
a student who is comfortable with mathematical proof and has seen some basic number theory
— say enough modular arithmetic to know whether an integer a is invertible modulo another
integer n — but who hasn’t had any exposure to quadratic forms before. At one point, we’ll also
use a bit of linear algebra; if you’ve been exposed to the concept of the determinant of a 2×2
matrix and what it’s used for, you should have enough background for this as well. As is often
the case with lecture notes, while I’ve done my best to make them readable in isolation, they
might not be as easy to follow outside the context of the class for which they were written.

This class will be all about a single question: given three integers a , b , c , which integers can
you write in the form

a x 2+ b x y + c y 2

for integers x and y ? This expression is called a binary quadratic form, and as we’ll see as the
week progresses, there is a lot of deep number theory implicated in such a simple-sounding
question. In fact, while we’ll be able to make a lot of progress, it’s a complex enough problem
that we won’t be able to give a completely general answer in just one week.

If you’re interested in filling in the gaps, I highly recommend looking through a few books on
the subject. Some of my favorites that I found while preparing this class were:

• The Sensual (Quadratic) Form by John Conway. This is a very slim book that goes through
several different ways of looking at a quadratic form. It’s a quite elementary and fun read
and offers a different perspective than the one we’ll be focusing on here.

• Topology of Numbers by Allen Hatcher. This one is longer and more detailed, and covers
everything we’ll be doing in this class and more. It’s a nice bridge from Conway’s book
(which it takes a lot of inspiration from) and the perspective that I take in this class.

• Primes of the Form x 2+n y 2 by David Cox. This book, as the title suggests, focuses on only
a special case of our central problem. It starts at a fairly elementary level and builds up to
some quite advanced material; this might be a nice book to read part of and come back to
at a later point in your mathematical education.
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1 Sums of Squares
To start, we’re going to focus on what’s probably the simplest nontrivial special case of this
question, one that we will be able to give a complete answer to: which integers can be written as
a sum of two squares? (This is the binary quadratic form with a = c = 1 and b = 0.)

So we’re looking for all integers that can be written in the form x 2+ y 2 for integers x and y .
For any particular small integer, it’s not that hard to work out by hand whether this is possible. If
you’d like, you can verify that among the integers from 0 to 40, the ones that can written as a
sum of two squares are exactly

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40.

One pattern you might notice is that none of these numbers is equivalent to 3 mod 4. Indeed,
it’s not that hard to verify that no sum of two squares can be 3 mod 4: if you start with a number
which is 0, 1, 2, or 3 mod 4 — the only possibilities — and square it, you will always get something
that’s either 0 or 1 mod 4 as the result, and the sum of two such numbers can only be 0, 1, or 2
mod 4.

This is part of the answer, but it isn’t the whole story: we can already see on this list that some
numbers that are 0, 1, or 2 mod 4 are missing. For example, 12, 21, and 6 all don’t appear. We’re
going to need a more sophisticated plan of attack.

1.1 The Gaussian Integers

One common strategy for understanding quadratic polynomials is to try to factor them. Our
polynomial x 2+ y 2 doesn’t factor usefully if we restrict ourselves to the real numbers, but if we
allow complex numbers, we can write

x 2+ y 2 = (x + y i )(x − y i ).

These two factors are complex numbers of a special type: complex numbers whose real and
imaginary parts are both integers. These are called Gaussian integers, and we’ll write

Z[i ] = {a + b i ∈C : a , b ∈Z}

for the set of all of them.1

The question of whether an integer can be written as a sum of two squares is therefore
equivalent to the question of whether we can factor it into two Gaussian integers in this way,
where the real parts are the same and the imaginary parts are negatives of each other. For
example, since 5= 22+12, we can write 5 as the product of the Gaussian integers 2+ i and 2− i .
Because of the role they play in the problem we’re trying to solve, it will be very helpful to have
names for products of this type.

Given a Gaussian integer z = x + y i , the conjugate of z is the Gaussian integer z = x − y i .
The norm of z is the product

N (z ) = z z = x 2+ y 2.

1When the distinction between Gaussian integers and ordinary integers is important, you might see the latter called
“rational integers” in some number theory texts, but we won’t use this terminology. We’ll instead always say “integer” for
an element of Z and “Gaussian integer” for an element of Z[i ].
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Using this terminology, the question we’re trying to answer is whether a given integer occurs as
the norm of some Gaussian integer.

In Exercise 1.1 below, you’ll verify that z w = z ·w for Gaussian integers z , w . This immediately
implies an incredibly useful property of norms. We get that

N (z w ) = z w z w = z z w w =N (z )N (w ),

that is, the norm of a product of Gaussian integers is the product of the norms. In terms of our
sums-of-squares problem, this means:

Proposition 1.1. If two integers m and n can both be written as a sum of two squares, so can mn.

1.2 Factorizations

In light of this, it makes sense to turn our attention to the question of how to factor a Gaussian
integer. If we understand how a Gaussian integer splits up into factors, then maybe we can try
to understand what norms of each of the factors can have and then combine them using our
new multiplication rule.

Every ordinary integer can be factored into primes, and these factorizations are always
unique up to reordering. We’ve already seen that a number might factor as a Gaussian integer
even if it is prime as an ordinary integer. We saw, for example, that 5= (2+ i )(2− i ). But we might
hope for a similar unique prime factorization result in the Gaussian integers.

There is one fairly trivial way that uniqueness of factorizations can fail in the Gaussian
integers. We can, for example, also write 5 = (1+ 2i )(1− 2i ). But while this looks like a new
factorization, if you notice that 1+2i = i (2−i ) and 1−2i =−i (2+i ), you’ll see that this factorization
is actually our old one “in disguise,” up to factors of i and −i that end up cancelling.2

It will be helpful to have some language to describe this situation. We’ll say that a Gaussian
integer u is a unit if there exists a Gaussian integer v such that u v = 1. You’ll show in Exercise
1.3 that a Gaussian integer is a unit if and only if it has norm 1. A Gaussian integer p is called
irreducible if it’s not a unit and if, whenever it factors as p = z w , one of z or w is always a unit.

The result we’re hoping for, then, is that any Gaussian integer factors into irreducibles, and
that these factorizations are unique except for reordering the factors and multiplying them by
units. This is in fact true, and we’ll prove it in the next section in Proposition 2.4. For now, though,
let’s take it for granted and see how it helps us determine which integers are sums of two squares.

The key step in the argument is a classification of the irreducible Gaussian integers that
appear in these factorizations. The answer turns out to be quite nice:

Proposition 1.2. Let p be a prime integer. There are three possibilities for how p can factor as a
Gaussian integer:

• We could have p =αα for some irreducible Gaussian integer α, where α= uα for some unit
u. In this case we say p is ramified. If instead α is not a unit multiple of α, we say p is split.
(Notice that in this case N (α) = p .)

• Alternatively, p could itself be irreducible as a Gaussian integer. In this case we say p is inert.
(In this case N (p ) = p 2.)

2In fact, a similar thing happens with factorizations of ordinary integers: we have both 6 = 2 · 3 and 6 = (−2)(−3).
We usually deal with this by just asking for the prime factors to be positive, but this option isn’t available to us in the
Gaussian integers, hence the need for this business about units.
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Furthermore, every irreducible Gaussian integer appears in this way. That is, up to multiplica-
tion by units, the complete list of irreducible Gaussian integers is:

• for every ramified prime p , one irreducible of norm p ;

• for every split prime p , two irreducibles of norm p which are conjugates of each other; and

• for every inert prime p , p itself.

Proof. Start by factoring our prime integer p into irreducibles, say p = q1q2 · · ·qn . Because (by
Exercise 1.3) any Gaussian integer with norm 1 is a unit, all the qi ’s have to have norms greater
than 1. Taking the norm of both sides, we then see that

N (q1)N (q2) · · ·N (qn ) =N (p ) = p 2.

So the N (qi )’s are integers which are bigger than 1 and their product is p 2. Since p is prime,
there are only two ways this could happen: there could just be one qi with norm p 2, or there
could be two which each have norm p . In the first case, we just have p = q1, so p is inert. In
the second case, p = q1q2, where N (q1) = N (q2) = p . But then by the definition of norm that
p =N (q1) = q1q1, so since p = q1q2, we conclude that q2 = q1. We therefore get that p is either
ramified or split, depending on whether q1 and q2 differ by a unit.

Our last task is to show that the irreducibles that show up in this way account for all the
irreducibles inZ[i ]. So let q be an irreducible Gaussian integer, and let n = q q be its norm. You’ll
show in Exercise 1.2 that q is irreducible as well, so this is the factorization of n into irreducibles.
Since q isn’t a unit, it’s norm is not 1, so there’s some prime p that divides n .

But then p in turn is divisible by one of the irreducibles from our list: either p is inert, so it’s
on our list itself, or it factors into an irreducible and its conjugate. Either way, this irreducible
divides q q , so because factorization is unique, it’s either equal to q or q . Because (as I encourage
you to convince yourself) our list of irreducibles is closed under taking conjugates, we can
conclude from this that q is on our list.

1.3 From Factorizations to Sums of Squares

Knowing whether or not a prime p is inert is essentially the same as knowing whether p can be
written as a sum of two squares. We saw in the course of the proof that if p is split or ramified
then it’s the norm of a Gaussian integer, and therefore it’s a sum of two squares. Conversely, if
p =N (z ) for some Gaussian integer z , then p = z z , and since neither z nor z is a unit, p can’t
be inert. So p is a sum of two squares if and only if it’s not inert.

And in fact, we can fairly directly turn it into an answer to the question in general:

Theorem 1.3. Let m be an integer greater than 1, and factor it into primes as m = p1p2 · · ·pn .
Then m is a sum of two squares if and only if each inert prime appears an even number of times
in this factorization.

Proof. Suppose that each inert prime shows up an even number of times. This means we can
write our factorization in the form

m = q1q2 · · ·qk r 2
1 r 2

2 · · · r
2

l ,
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where the qi ’s are all either split or ramified and the ri ’s are inert. (Some of the factors could be
repeated.) From Proposition 1.2, for each qi there is some irreducible Gaussian integer αi whose
norm is qi . But then, because the norm is multiplicative,

N (α1α2 · · ·αk r1r2 · · · rl ) = q1q2 · · ·qk r 2
1 r 2

2 · · · r
2

l =m .

So m is a norm, which is the same as being a sum of two squares.
For the other direction, suppose m is a sum of two squares. This means m is the norm

of some Gaussian integer z . We can factor z into irreducibles, and again by Proposition 1.2,
we know that the irreducibles that appear all either have norm p for some split or ramified
prime p or have norm q 2 for some inert prime q . So, when you multiply the norms of all these
irreducibles to find the norm of z , each inert prime will show up an even number of times, which
is what we needed to show.

So where does this leave us? Assuming we can show that the Gaussian integers have unique
factorization (which, again, we’ll do in Proposition 2.4) Theorem 1.3 gives us a more or less
complete answer to the question of which integers can be written as a sum of two squares: it’s
exactly those numbers whose prime factorizations contain each inert prime an even number of
times.

As a concrete answer to the question, it leaves a bit to be desired. It relies on knowing which
primes are inert, and this is really just asking which primes are sums of two squares. So it would
be fair to say that we’ll only really be done answering the question when we’ve found a way to
determine whether a given prime is inert. You’ll fill in this gap in the exercises below.

Exercises

1.1. Prove that, for Gaussian integers z and w , z w = z ·w .

1.2. Prove that if q is an irreducible Gaussian integer, then q is irreducible as well.

1.3. Use the multiplicativity of the norm to prove that a Gaussian integer is a unit if and only if
it has norm 1. Conclude from this that the only units are 1, −1, i , and −i .

1.4. (a) Prove that 2 is ramified.

(b) Prove that, if z is a Gaussian integer and z is a unit multiple of z , then z is of the
form n , ni , n +ni , or n −ni for some integer n . Conclude from this that 2 is the only
ramified prime.

1.5. Prove that if p is a prime which is equivalent to 3 mod 4, then p is inert.

1.6. In this problem we’re going to show that if p is a prime which is equivalent to 1 mod 4,
then p is split. Together with Exercises 1.4 and 1.5, along with Theorem 1.3, this gives a
complete answer to the question of which numbers can be written as a sum of two squares.

(a) Prove Wilson’s Theorem: if p is any prime, then (p −1)!≡−1 mod p . [Hint: Multiply
all the integers from 1 to p − 1, and try to pair off each one with its inverse mod p .
Which ones are left behind, and why?]

(b) Use Wilson’s Theorem to show that, if p is a prime which is equivalent to 1 mod 4,
then −1 is a square mod p .

(c) Deduce that, for some integer m , p divides m 2+1. Suppose p is inert. Use unique
factorization of Gaussian integers to derive a contradiction.
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2 Unique Factorization
Now that we’ve seen how factoring Gaussian integers into irreducibles can be used to answer our
question about sums of two squares, we can turn our attention to the last piece of unfinished
business from that story: the proof that Gaussian integers have unique factorization.

If you’re used to the integers, you might think that this should be obvious. But this is a less
trivial undertaking than it might sound! There are very similar number systems, which we’ll
explore later on, where unique factorization fails. For example, if we define

Z[
p
−5] = {a + b

p
−5 : a , b ∈Z},

then in Z[
p
−5]we have

6= 2 ·3= (1+
p
−5)(1−

p
−5).

In Exercise 2.1 you’ll show that all four of the numbers on the right side here are irreducible in
Z[
p
−5]. This means 6 factors into irreducibles in two different ways!

So whatever is responsible for unique factorization working out in Z[i ], it will have to involve
some feature that differentiates it fromZ[

p
−5]. Our job today will be to explain what that feature

is in a way that will set us up to locate it in other number systems that will be useful for analyzing
other quadratic forms.

2.1 Division with Remainder

There are lots of ways to prove that the ordinary integers have unique factorization. One of them
goes through division with remainder, which is just the familiar statement that, if a and m are
integers with m ̸= 0, then there exist integers q and r (the “quotient” and “remainder”) such that
a = q m + r and 0≤ r <m .

Our proof that the Gaussian integers have unique factorization is going to follow the same
path.3 We’ll therefore start by showing that something like this division with remainder procedure
also works in the Gaussian integers. In the integer version, the remainder has to be smaller than
m , so we’ll need a similar condition for our Gaussian integer version. One natural choice is to
require it to have a smaller norm. The complete statement is:

Proposition 2.1. Let a and m be Gaussian integers, and suppose m ̸= 0. Then there exist Gaussian
integers q and r such that a = q m + r and N (r )<N (m ).

Proof. Since m ̸= 0, the equation a = q m + r is equivalent to the equation

a

m
= q +

r

m
.

The requirement that N (r ) < N (m ) is then the same as requiring N (r /m ) < 1. If these were
ordinary integers, we could pick q and r by letting q be “integer part” of a/m ; this would make
the difference between a/m and q less than 1, and since this difference is exactly r /m , we’d be
done.

So let’s let q be the closest Gaussian integer to a/m . (If there’s a tie, just pick one.) We’ll be
done if we can show that we’ll always then have N (r /m ) = N (q − a/m ) < 1. This is probably

3In fact, if you’ve never seen a complete proof of unique factorization in the ordinary integers, exactly the same
argument will work there too, so you’ll get that as an added bonus!
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easiest to see geometrically. The Gaussian integers are the vertices of a grid of squares in the
complex plane where each square has side length 1. The number a/m will land inside one of
these squares, and the distance from any point inside a unit square to its closest vertex is always
at most 1/

p
2.

Now, if r /m = x + y i , then the distance in question is
p

x 2+ y 2, whereas N (r /m ) = x 2+ y 2.
That is, the norm is just the distance squared, so if the distance is at most 1/

p
2, the norm is at

most 1/2. This is indeed less than 1, which is all we needed.

Notice that, unlike the integer version, the q and r we get from this version of division with
remainder aren’t necessarily unique. For example, taking a = 7 and m = 3, we could write
7= 2 ·3+1 or 7= 3 ·3+ (−2). Both 1 and −2 have norms less than the norm of 3, so they’re both
suitable remainders.

2.2 Bézout’s Lemma and Unique Factorization

The reason division with remainder is helpful for proving unique factorization in the ordinary
integers is that it gives a simple proof of Bézout’s Lemma, the statement that, if a and b are
two integers with no common factors, then it’s possible to find integers m and n such that
a m + b n = 1. The same thing is true in the Gaussian integers, and for the same reason:

Lemma 2.2. Let a and b be Gaussian integers, and suppose a and b have no common factors
other than units. Then there exist Gaussian integers m and n such that a m + b n = 1.

Proof. For some choice of a and b , consider the set S of all Gaussian integers of the form
a m + b n . Since the norms of the elements of S are all nonnegative integers, there has to be an
element d with the smallest nonzero norm of all the elements of S . Since d ∈ S , it can be written
in the form a m + b n for some Gaussian integers m and n .

I claim that d is a common factor of a and b . To see this, let’s see what happens when
we apply the division-with-remainder procedure to a and d : we get Gaussian integers q and
r with a = d q + r and N (r ) < N (d ). But since d = a m + b n , a bit of algebra shows us that
r = a −d q = a (1− q m ) + b (q n ). This means r is an element of S with smaller norm than d ,
so since d had the smallest possible nonzero norm, we must have N (r ) = 0. But 0 is the only
Gaussian integer with norm 0, so in fact r = 0, meaning a = d q .

Exactly the same argument will show that b is also a multiple of d . Since the only common
factors of a and b are units, this means d is a unit, so suppose d e = 1. Multiplying the equation
d = a m + b n by e then gives 1= a (e m ) + b (e n ), giving us our desired expression for 1 as the
sum of a multiple of a and a multiple of b .

Bézout’s Lemma leads more or less directly to an important fact about irreducibles which
will be the main ingredient in our proof of unique factorization:

Corollary 2.3. Suppose p is an irreducible Gaussian integer, and, for some Gaussian integers a
and b , a b is a multiple of p . Then either a or b is a multiple of p .

Proof. Suppose a b is a multiple of p , but a isn’t. We’ll show that b is a multiple of p .
Because p is irreducible, the only non-unit factor of p (up to multiplying by a unit) is p itself,

which by assumption isn’t a factor of a , so a and p have no common factors other than units.
We can therefore apply Lemma 2.2 to find Gaussian integers m and n with a m +p n = 1.

But if we multiply this equation by b , we see that b = a b m + p b n . Both factors on the
right are multiples of p : the second obviously so, and the first because we assumed that a b is a
multiple of p . Therefore b is a multiple of p as well.
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In a number system like this, a distinction is often made between irreducibles and primes.
An irreducible is a number which can’t be factored into non-units, whereas a prime is a number
with the property in the statement of Corollary 2.3. The example from the beginning of the
section shows that, in Z[

p
−5], 2 is irreducible but not prime.

We now have everything we need to prove unique factorization.

Proposition 2.4. The Gaussian integers have unique factorization into irreducibles. That is, for
any nonzero Gaussian integer z that isn’t a unit, we can write z = p1p2 · · ·pn for some irreducibles
pi , and the irreducibles that appear in this way are unique up to reordering and multiplying by
units.

Proof. We’ll first show that factorizations exist at all. If z is irreducible, then we’re done: z = z is
already a factorization of z into irreducibles. Otherwise, it’s possible to write z =w w ′ where
neither w nor w ′ is a unit. We know that N (z ) =N (w )N (w ′), and by Exercise 1.3 from the last
section, since neither factor is a unit, that their norms are both bigger than 1. Since their product
is N (z ), this means N (w ) and N (w ′) are both strictly smaller than N (z ).

Continuing in this way, if w and w ′ are irreducible, then we’re done, otherwise take whichever
one isn’t irreducible and factor it. Because the norms of the factors are positive integers and they
keep decreasing every time a factor fails to be irreducible, this process has to end after finitely
many steps, and when this happens, we have our factorization of z into irreducibles.4

Now suppose we had two different factorizations of z into irreducibles, say

z = p1p2 · · ·pn = q1q2 · · ·qm .

Then p1 is a factor of q1 · (q2 · · ·qm ), so by Corollary 2.3, it’s either a factor of q1 or it’s a factor of
q2 · · ·qm . If we’re in the second case, we can apply the same logic again to conclude that p1 is
either a factor of q2 or of q3 · · ·qm . Continuing in this way, we can conclude that one of the qi ’s
has to be a multiple of p1.

Suppose qi is a multiple of p1. Since both p1 and qi are irreducible, this just means they’re
unit multiples of each other. Therefore, after possibly multiplying by a unit, we have the same
factor showing up in both of our factorizations, and so we can cancel it from the equation, getting
that p2 · · ·pn = q1 · · ·qi−1qi+1 · · ·qm . Now, the same argument shows that one of the remaining
q j ’s is (up to multiplication by a unit) equal to p2, so we can cancel p2 and q j from the equation.
Every time we do this, the two factorizations get shorter, and in the end we get that every one of
the p ’s is a unit multiple of a different one of the q ’s.5 Our two factorizations are therefore the
same up to multiplying by units and reordering, which was exactly what we needed to show.

This finishes our proof that Gaussian integers have unique factorization. In the next sections,
we’re going to see how to generalize the ideas that went into the sums-of-squares proof to other
binary quadratic forms, and we’ll see that unique factorization plays a vital role there as well.

Exercises

2.1. Prove that 2, 3, 1+
p
−5, and 1−

p
−5 are irreducibles in Z[

p
−5], and that none of these is

a unit multiple of any other. (Once we know this, the fact that 2 ·3= (1+
p
−5)(1−

p
−5)

really does show that unique factorization fails here.)

4Notice that this proof of the existence of factorizations didn’t actually require anything we proved in this section! It’ll
be in the proof of uniqueness that they come up.

5Why does this argument guarantee that we can’t assign two different p ’s to the same q ?
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2.2. Suppose that, instead of working in the Gaussian integers, we worked in

Z[
p

−d ] = {a + b
p

−d : a , b ∈Z}

for some positive integer d . If we tried to prove a version of our division with remainder
result (Proposition 2.1) using the same argument, for which values of d would we succeed?

2.3. (a) Use Bézout’s Lemma to prove that Gaussian integers have gcd’s. That is, given two
nonzero Gaussian integers a and b , prove that there exists a Gaussian integer d
which (i) is a common divisor of a and b , and (ii) has the property that any other
common divisor of a and b also divides d .

(b) Prove that gcd’s are unique up to multiplication by units.

(c) Prove that the set {a m + b n : m , n ∈Z[i ]} is exactly the set of multiples of d .

2.4. Our proof of unique factorization required using Corollary 2.3. Prove that the implication
in the other direction is true as well, that is, if you assume unique factorization holds, then
Corollary 2.3 follows.
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3 Other Quadratic Forms

3.1 Equivalent Forms

An arbitrary binary quadratic form looks like a x 2+ b x y + c y 2 for some integers a , b , c . Given
such a form, our goal will be to figure out which integers it represents, that is, which integers
can be written as a x 2+ b x y + c y 2 for integers x and y .

There’s a relatively straightforward way to turn one of these forms into another one which
represents exactly the same set of numbers. Suppose, for example, we start with the form x 2+ y 2

and do a linear change of coordinates like x ′ = x + y , y ′ = y . If we plug x = x ′− y ′ and y = y ′

into our form x 2+ y 2, we get the form x ′2−2x ′y ′+2y ′2.
If you had just seen this final expression, you might not have guessed that the integers it

represents are exactly the sums of two squares, but the method we used to construct it makes
this clear: given any number of the form n = x ′2−2x ′y ′+2y ′2, we can find the corresponding
pair of integers (x , y ) = (x ′− y ′, y ′) and conclude that n = x 2+ y 2.

When will this procedure work in general? If we try to use a linear change of coordinates
(x ′, y ′) = (r x + s y , t x + u y ) for some integers r, s , t , u , we need to have an inverse change of
coordinates, and because we’re specifically interested in plugging integers into our quadratic
forms, we need the inverse coordinate change to also have integer coefficients.

There’s a simple way to tell when this will happen that uses the formula for the inverse of
a 2×2 matrix: the inverse of the matrix ( r s

t u ) is 1
r u−s t

�

u −s
−t r

�

. So in order to guarantee that the
inverse coordinate change has integer coefficients, we want r u − s t =±1.

If two forms are related by a linear change of coordinates in this way, with r u − s t =±1, then
we’ll say the two forms are equivalent. (For example, our discussion above shows that the forms
x 2+ y 2 and x 2−2x y +2y 2 are equivalent.) Because both the initial change of coordinates and
its inverse have integer coefficients, they will both take integers to integers, and this means that
two equivalent forms will always represent the same set of numbers.

This concept will be a very useful tool for us; a lot of facts about which numbers can be
represented by a given form will be easier to see after replacing it with an equivalent form.

Many of those results involve representations of a particular type: we’ll say that an integer n
is primitively represented by our quadratic form if n = a x 2+ b x y + c y 2 for some x and y with
no common factors. Much of the reason this definition is worth thinking about comes from the
following result.

Proposition 3.1. Suppose n is primitively represented by the quadratic form a x 2+ b x y + c y 2.
Then this form is equivalent to a form whose first coefficient is n.

Proof. Say n = a w 2 + b w z + c z 2 where w and z have no common factors. Bézout’s Lemma
then lets us find integers s , u with w s + z u = 1. This means that the coordinate change (x , y ) =
(w x ′−u y ′, z x ′+ s y ′) has determinant 1, that is, it’s of the type that will produce an equivalent
form.

That equivalent form will look like a ′x ′2+ b ′x ′y ′+ c ′y ′2 for some integers a ′, b ′, c ′. If you
plug x ′ = 1 and y ′ = 0 into this form, you get a ′, the first coefficient. But the expression for our
coordinate change implies that this corresponds to (x , y ) = (w , z ), which were the inputs that
produced n . So a ′ = n .
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3.2 The Discriminant

A natural question to ask is whether there’s an easy way to tell whether or not two forms are
equivalent. The following fact is a big step toward answering that question.

Proposition 3.2. The discriminant of the form a x 2+ b x y + c y 2 is the number∆= b 2−4a c .
Two equivalent forms always have the same discriminant.

Proof. It’s possible to prove this using a direct computation, but the proof is much nicer if we
use a bit of linear algebra. Plugging a pair of numbers into our quadratic form can be written as
a matrix multiplication: I encourage you to verify that

a x 2+ b x y + c y 2 =
�

x y
�

A

�

x
y

�

,

where A =
�

a b
2

b
2 c

�

. When written this way, ∆ = −4det A, so it will be enough to show that our

coordinate change leaves this determinant unchanged.
Suppose a x 2+ b x y + c y 2 is equivalent to a ′x ′2+ b ′x ′y ′+ c ′y ′2 via the coordinate change

(x , y ) = (r x ′+ s y ′, t x ′+u y ′), so that
� x

y

�

=C
�

x ′
y ′
�

, where C = ( r s
t u ). Recall that, by our definition

of equivalent forms, det C =±1. The row vectors are then related in a similar way, but with the
transpose: ( x y ) = ( x ′ y ′ )C T .

If we plug in both of these expressions, we get that

a ′x ′2+ b ′x ′y ′+ c ′y ′2 =
�

x ′ y ′
�

C T AC

�

x ′

y ′

�

.

Since taking the transpose doesn’t change the determinant, det(C T AC ) = (det C )2 det A, and
since det C =±1, this is just det A, which is what we needed to show.

This result tells us that, if two forms are equivalent, the discriminants have to be the same.
But it doesn’t imply that two forms with the same discriminant have to be equivalent, and in fact,
this is not always true. For example, the forms x 2+4y 2 and 2x 2+2y 2 both have discriminant
−16, but the first one represents 1 and the second doesn’t, since all its outputs are even.

In our discussion of the quadratic form x 2+ y 2, we were able to reduce everything to the
question of which primes could be represented. In particular, we showed that an integer was
representable if and only if it was a product of representable primes times a square. It would
be nice if a similar thing was true of other quadratic forms, but here the news is once again not
good. The form x 2+5y 2 represents 6, so if things were going to work out like they did for sums
of squares, we’d expect it to also represent 2 and 3, but I encourage you to prove to yourself that
it doesn’t.

So, at least for the time being, we’re going to have to restrain our ambitions. While the
project of reducing everything to primes won’t work out for every quadratic form, there is a
correspondingly nice story if we just ask which numbers can be represented by some form with
a given discriminant. We’ll say that a number n is represented in discriminant∆ if there exists
a quadratic form with discriminant∆ representing n .

Lots of our sums-of-squares results have analogues in this new context. You’ll fill in most of
this picture in the exercises, but here are a couple of results to give you a taste of what’s involved.

Proposition 3.3. Suppose n is primitively represented in discriminant∆. Then every factor of n
is also primitively represented in discriminant∆.
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Proof. Suppose n is primitively represented by the form a x 2+b x y + c y 2 of discriminant∆. By
Proposition 3.1, there is an equivalent quadratic form which looks like n x 2+ b ′x y + c ′y 2 for
some b ′ and c ′. By Proposition 3.2, this new form also has discriminant∆.

Now, suppose d is a factor of n , say n = d e . We can “move the e over” to the last term,
replacing d e x 2+b ′x y + c ′y 2 with d x 2+b ′x y + e c ′y 2, and this won’t change the discriminant.
But this form clearly primitively represents d by setting x = 1 and y = 0.

Proposition 3.4. A number n is primitively represented in discriminant∆ if and only if∆ is a
square mod 4n.

Proof. Suppose∆ is a square mod 4n , say∆≡ b 2 mod 4n . This means that, for some integer
c , b 2 −∆= 4n c , or rearranging∆= b 2 −4n c . So∆ is the discriminant of the quadratic form
n x 2+ b x y + c y 2, which clearly primitively represents n .

Conversely, if n is primitively represented by a form of discriminant∆, we can, like in the
proof of the previous result, find an equivalent form with the same discriminant whose first
coefficient is n . This form looks like n x 2 + b x y + c y 2 for some integers b , c , and since its
discriminant is∆, we see that∆= b 2−4n c , so∆≡ b 2 mod 4n .

The final story, which you’ll prove in Exercise 3.4, is that a number n is represented in
discriminant∆ if and only if, in its prime factorization, each prime which can’t be represented
appears an even number of times. This is very similar to what we proved about sums of squares:
in that case, the non-representable primes were the ones that are 3 mod 4.6

The difference is that that earlier result was about one specific form, namely x 2+ y 2, whereas
the results we’re proving here only tell you whether a number is represented by some form of
discriminant ∆. Accomplishing our goal of knowing which numbers are represented by one
specific quadratic form will require some more work, and in fact we won’t be able to give a
completely general answer in this class. There are, however, some special cases where there is a
very nice story to tell, and that is the task we’ll take up next.

Exercises

3.1. Prove that an integer∆ is the discriminant of some quadratic form if and only if∆ is 0 or 1
mod 4.

3.2. (a) Suppose n is square-free, that is, none of the prime factors of n appears more than
once. Prove that if n is represented by some quadratic form, then it is primitively
represented by that quadratic form.

(b) Suppose n is represented by some quadratic form. Prove that we can write n = d 2m
for some integers d and m , where m is primitively represented by that quadratic
form.

(c) Prove that if m is represented by some quadratic form and d is any integer, then d 2m
is also represented by that quadratic form.

3.3. For parts (a) and (c) of this exercise, it will be helpful to use the Chinese Remainder
Theorem. If you’ve never seen it, or you’d just like a reminder of how it works, come find
me!

6In fact, if∆=−4, Proposition 3.4 implies that a prime p is representable if and only if −4 is a square mod 4p , and if
p is odd, this is the same as −1 being a square mod p , which was exactly the condition you used in Exercise 1.6 to show
that every prime which is 1 mod 4 is represented by x 2 + y 2.
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(a) Suppose n is odd. Prove that n is primitively represented in discriminant∆ if and
only if∆ is a square mod n .

(b) If ∆ = −4, as it is for the form x 2 + y 2, then for n = 9 this condition would require
checking whether−4 is a square mod 9, i.e., whether 5 is a square mod 9. The squares
mod 9 are just 0, 1, 4, and 7, but 9 is a sum of two squares, namely 32 + 02. What’s
going on here?

(c) Suppose d and e are both primitively represented in discriminant ∆ and have no
common factors. Prove that d e is primitively represented in discriminant∆.

3.4. Use the results from this section and the previous exercises to prove that an integer n can
be represented in discriminant∆ if and only if, in the prime factorization of n , each prime
p for which∆ is not a square mod 4p appears an even number of times.

3.5. In this section, we mentioned that the quadratic form x 2 + 5y 2 represents 6, but not
either of its prime factors 2 or 3. This form has discriminant −20. Use the procedures in
Propositions 3.1 and 3.3 to find two forms of discriminant −20, one that represents 2 and
one that represents 3.
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4 Quadratic Number Rings

4.1 Factoring a Quadratic Form

We were led to look at the Gaussian integers by factoring the expression x 2+ y 2 as (x + y i )(x− y i ).
So let’s take an arbitrary quadratic form a x 2+ b x y + c y 2 and try to factor it in a similar way.

If we first factor out y 2, then this expression looks like

y 2

�

a
�

x

y

�2

+ b
x

y
+ c

�

.

The bit in parentheses is just the quadratic polynomial a x 2+b x + c with x/y plugged in, so we
can factor it with the quadratic formula. Writing∆= b 2−4a c as before, we get

a x 2+ b x y + c y 2 = a

�

x +
b +
p
∆

2a
y

��

x +
b −
p
∆

2a
y

�

.

To make our comparison with the Gaussian integers more direct, we can pull the a ’s out of the
denominators and write it like this:

1

a

�

a x +
b +
p
∆

2
y

��

a x +
b −
p
∆

2
y

�

.

If ∆ is a square, then these factors will actually be rational numbers. The case where this
doesn’t happen is much more interesting, so from now on we’ll always assume that ∆ isn’t a
square.

Just as the Gaussian integers deserved our attention because they formed the set of numbers
that could appear as one of the factors in the factorization of x 2+ y 2, we want a set of numbers
to serve the same role for this new factorization.

To get the exact set we want, it will be helpful to separate the cases where∆ is even or odd.
In fact, because∆= b 2−4a c and squares can only be 0 or 1 mod 4,∆ can also only be 0 or 1
mod 4.

If ∆ is 0 mod 4, then the formula ∆ = b 2 − 4a c indicates that b is also even. I encourage
you to verify that this means both of the factors in our factorization can be written in the form

r + s
p
∆

2 where r and s are integers.
If∆ is 1 mod 4, then the same logic implies that b has to be odd. In this case, I encourage

you to check that our factors are both of the form r + s 1+
p
∆

2 where r and s are integers.
So, if we define

τ∆ =

¨p
∆

2 if∆≡ 0 mod 4
1+
p
∆

2 if∆≡ 1 mod 4,

then our two factors will always be in the set

R∆ = {r + sτ∆ : r, s ∈Z}.

We’ll call R∆ the quadratic number ring with discriminant∆. Here are a couple examples:

• If we start with the quadratic form x 2+ y 2, we’re supposed to get the Gaussian integers.

And indeed, we get∆=−4, so τ∆ =
p
−4
2 = i and R∆ = {x + y i : x , y ∈Z} just as expected.
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• Similarly, the quadratic form x 2 − n y 2 gives us ∆ = 4n and so τ∆ =
p

n . In this case,
R∆ = {r + s

p
n : r, s ∈ Z}. Indeed, this is what we would have expected from factoring

x 2−n y 2 = (x + y
p

n )(x − y
p

n ).

• Starting with x 2+ x y + y 2, we get∆=−3 and τ∆ =
1+
p
−3

2 . This point is the vertex of an
equilateral triangle whose other vertices are at 0 and 1, so the points in R∆ form a triangular
lattice in the plane. These are called the Eisenstein integers.

4.2 Norms and Principal Forms

The arithmetic of R∆ has a lot in common with the Gaussian integers. R∆ always contains the
integers, and if you add or multiply two elements of R∆ — that is, two numbers of the form
r + sτ∆ — you get another element of R∆.7

The Gaussian integers were useful because the integers of the form x 2+ y 2 were exactly the
norms of Gaussian integers. So we’d like a conjugation operation and a norm function on R∆
that can serve the same role. If we look back at our factorization

a x 2+ b x y + c y 2 =
1

a

�

a x +
b +
p
∆

2
y

��

a x +
b −
p
∆

2
y

�

,

we can see what we need: conjugation ought to negate the coefficient on
p
∆, since that’s how

to turn the first factor into the second. If∆ is even, this is the same as setting τ∆ =−τ∆, and if∆

is odd we end up with τ∆ = (1+
p
∆)/2= (1−

p
∆)/2= 1−τ∆.

If we then define N (z ) = z z , we can write

a x 2+ b x y + c y 2 =
1

a
N

�

a x +
b +
p
∆

2
y

�

.

This is a more complicated relationship than we had before. Whereas the integers of the form
x 2+ y 2 were exactly the norms of Gaussian integers, we can’t always conclude from this that the
integers of the form a x 2+ b x y + c y 2 are exactly the norms of elements of R∆. There are in fact
two obstacles: the 1/a multiplying the norm in this expression, and the fact that there might be

elements of R∆ that can’t be written in the form a x + b+
p
∆

2 y .
Indeed, our study of equivalent quadratic forms in the last section already told us that it’s

possible for two forms to have the same discriminant but not represent the same set of numbers.
If a quadratic form does happen to have the property that the numbers it represents are exactly
the norms of elements of R∆, like we saw for x 2+ y 2, we’ll call it a principal form.

Even without the technology from the last section, it’s not hard to see that not every quadratic
form is principal. If a form is principal, it will always take the value 1 for some choice of inputs.
This is simply because N (1) = 1, so 1 is always a norm. This means any form that doesn’t represent
1 can’t be principal; for example, as I encourage you to verify, this includes a x 2+ c y 2 whenever
both a and c are strictly greater than 1.

7Proving this for addition is pretty transparent; for multiplication, the odd-discriminant case is slightly less obvious. I
encourage you to verify it!
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4.3 The Role of Unique Factorization

In our story about sums of squares, the key to reducing everything to primes was that the
Gaussian integers had unique factorization. This step was crucial in our proof of Proposition
1.2, where we formed an exhaustive list of the irreducibles in Z[i ].

The next big result that we’ll prove is that, if R∆ is a similarly nice ring, then we can expect the
same behavior from any quadratic form of discriminant∆. (This theorem is in fact most of the
reason it’s worth introducing R∆ to our discussion in the first place!) It will turn out to be easier
to phrase the theorem in terms of Bézout’s Lemma rather than unique factorization directly.

Theorem 4.1. Suppose R∆ satisfies Bézout’s Lemma, that is, for any a , b ∈R∆ with no common
factors, it’s possible to find m , n ∈ R∆ such that a m + b n = 1. Then every quadratic form with
discriminant∆ is either a principal form or the negative of a principal form.

Proof. Consider a quadratic form a x 2+ b x y + c y 2 of discriminant∆. We want to show that
the set of numbers of the form

1

a
N

�

a x +
b +
p
∆

2
y

�

for integers x , y is exactly the set of norms of elements of R∆ (or their negatives).
We’ll start by looking at which elements of R∆ can appear inside the norm in this expression.

Let’s call this set

J = {a x +
b +
p
∆

2
y : x , y ∈Z}.

In Exercise 4.1, you’ll show that J can also be written as {a x + b+
p
∆

2 y : x , y ∈R∆}, that is, we can
allow x and y to be arbitrary elements of R∆ rather than just integers and the resulting set will
stay the same.

You showed in Exercise 2.3 that Bézout’s Lemma implies the existence of gcd’s.8 So let d be

the gcd of a and b+
p
∆

2 . Since we now know that we can write J = {a x + b+
p
∆

2 y : x , y ∈R∆}, that
exercise tells us that J consists of exactly the multiples of d .

We claim that in fact N (d ) =±a . To see this, first note that N (d ) = d d . Since this is a multiple

of d , it’s in J , so we can write N (d ) = a m + b+
p
∆

2 n for integers m , n . And in fact, since N (d ) is
an integer, we can see that n = 0, so N (d ) = a m . We also know that, since a ∈ J , it’s a multiple of
d , say a = z d for some z ∈R∆.

Taking the conjugate of this equation (and using the fact that a , being an integer, is its own
conjugate) we get a = z d . Combining this with our previous result gives d d = a m = z d m , and
so d = z m . This means that m divides d , and therefore m divides every element of J .

But one of the elements of J is b+
p
∆

2 , and this is supposed to be a multiple of the integer m .
If we write this element in terms of τ∆, the coefficient on τ∆ will be 1. So the only integers that
could possibly divide it are 1 and −1, so m = ±1. We then conclude that N (d ) = a m = ±a , as
desired.

This in fact basically finishes the entire proof. Since we know that J consists of exactly the
multiples of d , the set of values of our quadratic form consists of all numbers of the form 1

a N (w d )
for w ∈ R∆. If N (d ) = a , then this is just N (w ), so our form represents exactly the norms of
elements of R∆. If N (d ) = −a , then we get −N (w ), and our form represents the negatives of
the norms of elements of R∆. These were the two possibilities laid out in the statement of the
theorem.

8That exercise of course was specifically about the Gaussian integers, but the proof only required knowing that
Bézout’s Lemma was true, so it will work for us as well.
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The fact that this theorem can’t tell the difference between the form being principal or its
negative being principal is an inconvenience, but there are a couple situations where it doesn’t
matter. If there is an element η ∈R∆ with norm−1, then the set of norms and the set of negatives
of norms are the same set, because for any z , N (ηz ) = −N (z ). Alternatively, you’ll show in
Exercise 4.2 that if∆< 0, then all norms in R∆ are nonnegative, which makes the two cases trivial
to tell apart.

If we’re in either of these situations and we also have Bézout’s Lemma, then, combined with
the results from the last section, we can get a complete answer to our central question: every
quadratic represents the same set of numbers, so determining which numbers are represented
in discriminant∆ is the same as determining which numbers are represented by one particular
form of discriminant∆. For example, you’ll prove in Exercise 4.3 that the ring R−3 of Eisenstein
integers is one of these, so we can give a complete classification of the integers of the form
x 2+ x y + y 2.

This of course leaves open the question of what happens when R∆ is not so nice. We already
have an example in the ring R−20 =Z[

p
−5], where 6 factors as both 2 ·3 and (1+

p
−5)(1−

p
−5),

and we have also correspondingly seen that the form x 2+5y 2 of discriminant −20 represents 6
but doesn’t represent either 2 or 3.

In the final section, we’ll take up this specific example in more detail and see how the failure of
unique factorization makes the classification of integers of the form x 2+5y 2 more complicated.

Exercises

4.1. Suppose a x 2+ b x y + c y 2 is a quadratic form of discriminant∆, and, as in the proof of

Theorem 4.1, define J = {a x + b+
p
∆

2 y : x , y ∈Z}. Prove that aτ∆ and b+
p
∆

2 τ∆ are both in

J , and conclude from this that we could also write J = {a x + b+
p
∆

2 y : x , y ∈R∆}.

4.2. Prove that, if∆< 0, then the norm of every element of R∆ is nonnegative. Conclude that
every quadratic form of discriminant∆ either only represents nonnegative numbers or
only represents nonpositive numbers.

4.3. In this problem, we’ll see what the tools we’ve developed tell us about integers of the form
x 2+ x y + y 2.

(a) The discriminant of this form is −3. Argue that the ring R−3 has a division-with-
remainder theorem and therefore that it satisfies Bézout’s Lemma. [Hint: Proposition
2.1 used the fact that the Gaussian integers formed a square grid in the complex plane.
For this one, use the fact that the points of R−3 form a triangular grid.]

(b) What condition on a prime p will tell you whether it’s represented by the form x 2+
x y + y 2? Check this condition against the first few primes and, for the ones that are
representable, find a representation.

(c) How could you determine which integers are represented by the form x 2+ x y + y 2?

4.4. In this problem, we’ll show that if ∆ ≡ 0 mod 4 and ∆ < −8, then R∆ never has unique
factorization.

(a) Say∆= 4d with d <−2, so that R∆ =Z[
p

d ]. Prove that 2 is not a norm of any element
of Z[
p

d ], and conclude from this that 2 is irreducible.

(b) Show, by factoring d 2 − d in two different ways, that Z[
p

d ] doesn’t have unique
factorization.
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5 A Taste of the General Case
The story we’ve just finished telling is a quite compelling one when it works out. If R∆ satisfies
Bézout’s Lemma, then every quadratic form of discriminant∆ either represents the norms of
elements of R∆ or their negatives. And, if∆< 0 or there’s an element of norm−1, we can combine
this with our earlier results about which numbers are represented in discriminant ∆ to get a
complete answer to our question of which numbers are represented by a given form.

But R∆ doesn’t always satisfy Bézout’s Lemma. Indeed, we’ve already looked a bit at the
example of x 2 + 5y 2, where ∆ = −20, and seen that this complicates our story. In this final
section, we’re going to give a quick overview — without proving much — of how the algebra of
R∆ can be used to answer the question of which integers can be represented by a given quadratic
form of discriminant∆.

This section will necessarily be much sketchier than what came before it! If you’re inter-
ested in filling in the details, I highly recommend checking out the books mentioned in the
introduction; the last chapter of Hatcher in particular is a good source for this material.

5.1 An Example

Let’s start by investigating x 2+5y 2 the same way we started looking at sums of squares, by listing
some of the integers that it represents. The numbers represented by this form up to 200 are:

0, 1, 4, 5, 6, 9, 14, 16, 20, 21, 24, 25, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 64, 69, 70, 80, 81, 84, 86, 89, 94,

96, 100, 101, 105, 109, 116, 120, 121, 125, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 169,

174, 180, 181, 184, 189, 196.

We know that, if a form represents some number, then it also represents any perfect square
times that number. So let’s trim this list down by removing everything that’s a perfect square
multiple of another entry on the list. We’re left with:

1, 5, 6, 14, 21, 29, 30, 41, 46, 61, 69, 70, 86, 89, 94, 101,

105, 109, 129, 134, 141, 145, 149, 161, 166, 174, 181.

If we restrict just to the primes, we get

5, 29, 41, 61, 89, 101, 109, 149, 181.

These are exactly the primes up to 200 that are 1 or 9 mod 20, along with 5, so we can maybe
conjecture that that’s how to determine which primes are represented by our form. But, unlike
in the case where R∆ satisfies Bézout’s Lemma, this is not enough to determine which numbers
are represented by our form! Our original list contains numbers, like 6 and 14, whose prime
factors aren’t on the list of primes we just produced.

If we list the prime factors that do show up9, we get, along with the list above, the primes

2, 3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167.

9Producing this list requires looking at numbers represented by our form that are bigger than 200. For example, even
though 167 isn’t a factor of any of the numbers we listed earlier, it is a factor of 334= 172 +5 ·32.
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These are the primes that are 3 or 7 mod 20, along with 2. A bit more playing around will
eventually lead to the observation that, in order for a number to be represented by x 2 + 5y 2,
it needs to contain an even number of primes from this second list. For example, 129= 3 ·43,
161= 7 ·23, and 966= 2 ·3 ·7 ·23= 312+5 ·12 all pass this test, but 42= 2 ·3 ·7 doesn’t.

In fact, this second list contains exactly the primes represented by 2x 2 + 2x y + 3y 2. The
elements up to 200 represented by this form are

0, 2, 3, 7, 8, 10, 12, 15, 18, 23, 27, 28, 32, 35, 40, 42, 43, 47, 48, 50, 58, 60, 63, 67, 72, 75, 82, 83, 87, 90, 92,

98, 103, 107, 108, 112, 115, 122, 123, 127, 128, 135, 138, 140, 147, 160, 162, 163, 167, 168, 172, 175,

178, 183, 188, 192, 200.

Let’s write S1 for the set of numbers represented by x 2 + 5y 2 and S2 for those represented
by 2x 2+2x y +3y 2. A bit more experimentation would lead you to the conclusion that, if you
multiply two numbers from S2, the result is always in S1. We can in fact form a “multiplication
table” which tells us the result of all such multiplications: multiplying two S1’s or two S2’s always
gives an S1, and multiplying one of each gives an S2.

If we could establish this, and we could establish which primes belong to each list, we’d have
a complete classification of which numbers are represented by x 2+5y 2: n is represented by this
form if and only if, in its prime factorization, each prime that isn’t represented in discriminant
−20 appears an even number of times, and we have an even number of (possibly different)
primes from S2, with no restriction in the primes from S1.

5.2 Ideals

Let’s now turn to the question of what this story should look like in general. Start by once again
picking a quadratic form, and since we might be considering more than one form at the same
time, let’s give this one a name, say

Q (x , y ) = a x 2+ b x y + c y 2.

Suppose Q has discriminant∆. To make everything simpler, let’s assume that∆< 0 and that Q
represents only nonnegative numbers. In particular, I encourage you to verify that this implies
that both a and c are positive.

In our proof of Theorem 4.1 — the fact that, if R∆ satisfies Bézout’s Lemma, then Q represents
either the norms or their negatives — we considered the set

JQ = {a x +
b +
p
∆

2
y : x , y ∈Z}.

We showed that, if you multiply an element of JQ by anything from R∆, the result is still in JQ .
Subsets like JQ are important enough to have a name: we’ll say that a set I ⊆R∆ is an ideal if

• I is closed under addition, i.e., if u , v ∈ I then u + v ∈ I .

• If u ∈ I and r ∈R∆, then r u ∈ I .

Given some list of elements u1, . . . , un ∈R∆, we can always form an ideal by considering all
possible sums of different multiples of the ui ’s. The common way to denote this ideal is to just
wrap the list of elements in parentheses, that is,

(u1, . . . , un ) = {r1u1+ · · ·+ rn un : r1, . . . , rn ∈R∆}.
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The ideal JQ that we got from our quadratic form can be written in this form quite simply: we
have

JQ =

�

a ,
b +
p
∆

2

�

.

When an ideal I is generated by just one element, say I = (d ) for some d ∈R∆, we’ll say that
I is principal, and specifically call it the principal ideal generated by d . This is the same as just
saying that I consists of all the multiples of d . I encourage you to convince yourself — possibly
using some ideas from Exercise 2.3 — that if R∆ satisfies Bézout’s Lemma, then every ideal in R∆
is principal. Rings with this property are called principal ideal domains.

Using this new language, we could say that what we showed in Theorem 4.1 was that, when-
ever JQ is a principal ideal, Q represents either the norms or their negatives. If R∆ is a principal
ideal domain, this will always be true, but if not, then it will be true for some quadratic forms
but not others.

Let’s see how this shakes out in our examples in discriminant −20. The form x 2+5y 2 will
give us the ideal (1,

p
−5), which is just the entirety of R∆. This ideal is certainly principal — it’s

generated by 1 — and sure enough, this form gives us the norms. I encourage you to compute
that the form 2x 2+2x y +3y 2 gives us the ideal (2, 1+

p
−5). Because this form doesn’t represent

the norms, this ideal can’t be principal, which you could also verify directly if you like.

5.3 Ideal Products and Norms

Because we’re interested in seeing what happens when we multiply the numbers represented
by our respective forms, it’ll be helpful to see what happens when we multiply elements from
two ideals by each other. We’ll do this by introducing a product operation on ideals. It might be
tempting to define the product of two ideals I and J as something like {u v : u ∈ I , v ∈ J }, but
this isn’t quite right: this set is usually not going to be closed under addition, and therefore it
won’t be an ideal. To get an ideal, we instead look at all possible sums of elements of this form,
that is,

I J =

¨

n
∑

i=1

ui vi : ui ∈ I , vi ∈ J

«

.

For the ideal J = (2,1+
p
−5), I encourage you to convince yourself that we get J 2 = (4,2+

2
p
−5,−4+2

p
−5) = (2). In particular, notice that, even though J isn’t principal, its square is! As

we’ll see momentarily, this is essentially the reason why the product of two elements represented
by 2x 2+2x y +3y 2 is always represented by x 2+5y 2.

Recall that the relationship between the ideal and the form was that

Q (x , y ) =
1

a
N

�

a x +
b +
p
∆

2
y

�

,

and that JQ contains exactly the elements that show up inside the norm here. So knowing which
ideal JQ is almost tells you which numbers are represented by Q ; the only obstacle is the factor
of 1/a in front. If we could find a way to extract a just from the ideal, then we’d be in business.

Just as we defined norms of elements of R∆, it’s in fact possible to define norms of ideals in a
similar way: given an ideal I ⊆R∆, we can define I = {u : u ∈ I }. When I has the property that
I I = (n ) for some positive integer n , we’ll say that I is invertible and define N (I ) = n . In our
computation earlier with J = (2, 1+

p
−5), it turns out that J is its own conjugate, and therefore

N (J ) = 2.
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What if our ideal isn’t invertible? It is also possible to define a norm in that case, but the
theory is much less nice. It turns out that, if the coefficients a , b , c of the quadratic form Q have
no common factors, then the ideal JQ will always be invertible. In particular, you can check that,
if∆ can’t be written as a square times another discriminant, then every form of discriminant∆
will have coefficients with no common factors. Such∆’s are called fundamental discriminants,
and for simplicity, we’ll assume that∆ is fundamental from now on.

In fact, I encourage you to compute that, in this happy scenario, we have N (JQ ) = a .10 This
means we can in fact recover the numbers represented by our form just from the ideal JQ : you
can check that an integer n is represented by Q if and only if n =N (u )/N (JQ ) for some u ∈ JQ .

Suppose m and n are represented by 2x 2+2x y +3y 2. This means we have m =N (u )/N (J )
and n = N (v )/N (J ) for some u , v ∈ J = (2,1 +

p
−5). Therefore, mn = N (u v )/N (J 2). (It’s

straightforward to check that, for any invertible ideals I , I ′, we have N (I I ′) =N (I )N (I ′).) But we
showed earlier that J 2 = (2), so N (J 2) = 4. Since u v ∈ J 2 = (2), we get that u v = 2w for some w ,
and therefore mn =N (2w )/4=N (w ). In other words, the fact J 2 was principal does indeed tell
us that mn is a norm.

5.4 The Ideal-Form Story in General

We’re now ready to describe the relationship between quadratic forms and ideals in general, or
at least whenever∆< 0, our form takes positive values, and∆ is a fundamental discriminant.

Suppose we start from a form Q . We’ve already seen how to produce an ideal JQ , and our
procedure also gave us a pair of elements α,β ∈ JQ for which JQ = (α,β ) and

Q (x , y ) =
N (xα+ yβ )

N (JQ )
.

(Specifically, α= a and β = b+
p
∆

2 .)
This also gives us a nice way to go backwards, from ideals to forms. If I is an ideal in R∆, it is

in fact always possible to write I = {αx +β y : x , y ∈Z}. We won’t prove this, but if you pick such
a pair of generators which is positively oriented — that is, the angle from α to β in the complex
plane is counter-clockwise — we can produce the quadratic form

QI (x , y ) =
N (xα+ yβ )

N (I )
.

What happens if we replace Q by an equivalent form and look at JQ ? You might expect from
the way we’ve been setting things up that the ideal JQ will be unchanged, but this is not quite
true. For example, the form 2x 2+2x y + y 2 of discriminant −4 is equivalent to x 2+ y 2, but it
gives the ideal (2, 1+ i ) = (1+ i ), whereas x 2+ y 2 gives the ideal (1).

What is true is that, if Q and Q ′ are equivalent via a change of coordinates with determinant
1 (rather than −1), then it will always be the case that r JQ = r ′ JQ ′ for some r, r ′ ∈R∆. When the
change of coordinates between Q and Q ′ has determinant 1, we’ll say Q and Q ′ are properly
equivalent. The procedure for going from ideals to forms we just described doesn’t in fact care if
you multiply the ideal by a constant: we always have N (r I ) =N (r )N (I ), and I encourage you to
check that this means QI and Qr I are the same quadratic form (if you choose the right α and β
both times).

10If we didn’t assume a was positive, this would have to say |a |.
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Whenever two ideals I and I ′ have the property that r I = r ′I ′ for some r, r ′ ∈R∆, we’ll say
that I and I ′ are equivalent. The big theorem is then as follows: If ∆ < 0 is a fundamental
discriminant, there is a one-to-one correspondence between quadratic forms of discriminant
∆ with positive values up to proper equivalence and nonzero ideals of R∆ up to equivalence.
Furthermore, if m is represented by a form corresponding to an ideal I and n is represented by a
form corresponding to an ideal J , then mn is represented by a form corresponding to the ideal I J .

(What happens if instead Q and Q ′ are related by a change of coordinates with determinant
−1? In this case, it turns out that JQ is equivalent to JQ ′ . If JQ isn’t equivalent to its own conjugate,
that means we’ll get a different ideal out, which will get in the way of building a nice one-to-one
correspondence. For this reason, we’ll restrict our attention to proper equivalence of forms from
now on.)

The set of equivalence classes of nonzero ideals under multiplication forms what’s called an
abelian group. This means multiplication is associative, it has an identity element (namely the
class containing the ideal (1)), and every ideal has an inverse — the inverse of I is in fact just I ,
since I I is principal and therefore equivalent to (1). This group is called the ideal class group of
R∆, and it’s one of the most important structures in algebraic number theory.

How could we turn this into a procedure for determining which numbers are represented by
which forms of a given discriminant? For this we’ll need one more big fact. If∆ is a fundamental
discriminant, then there’s a unique factorization theorem for ideals in R∆. That is, ideals in R∆
can be factored into “irreducibles,” called prime ideals, and these factorizations are unique.
This is true whether or not R∆ has unique factorization of elements!11

From this fact, it’s possible to prove a classification of prime ideals in R∆ that’s very similar to
our classification of irreducibles in Z[i ]: a prime integer p is inert if (p ) is a prime ideal in R∆;
the only other possibility is that (p ) = P P for some prime ideal P , and in this case we say p is
ramified if P = P and split if P ̸= P . Like in the Gaussian integers, every prime ideal appears in
this way: if p is inert, there’s one prime ideal of norm p 2; if p is ramified, there’s one prime ideal
of norm p ; and if p is split, then there are two prime ideals of norm p which are conjugates of
each other.

The procedure for determining whether n is represented by some form Q of discriminant
∆ then shakes out as follows. In order to be represented in discriminant ∆, each prime that
isn’t represented in discriminant∆ needs to appear an even number of times. Each prime p
that is represented in discriminant∆will be either ramified or split, that is, (p ) = P P for some
prime ideal P . The only forms which represent p will turn out to be the ones corresponding
to the ideals P and P , and from here we can produce a list of all the forms representing n : if
n = d 2p a1

1 · · ·p an
n , where each pi = Pi Pi , then a form Q represents n if and only if the class of the

corresponding ideal in the class group can be written as P ±a1
1 · · ·P ±an

n , where the minus sign in
an exponent means we take the conjugate of the corresponding ideal.

11In fact, this is the original reason for the name “ideal”: they’re kind of like numbers in R∆, but they’re better, because
they have unique factorization even if the numbers don’t.


